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SUMMARY

A fundamental challenge in social cognition is how
humans learn another person’s values to predict their
decision-making behavior. This form of learning is
often assumed to require simulation of the other by
direct recruitment of one’s own valuation process
to model the other’s process. However, the cognitive
and neural mechanism of simulation learning is not
known. Using behavior, modeling, and fMRI, we
show that simulation involves two learning signals
in a hierarchical arrangement. A simulated-other’s
reward prediction error processed in ventromedial
prefrontal cortex mediated simulation by direct
recruitment, being identical for valuation of the self
and simulated-other. However, direct recruitment
was insufficient for learning, and also required
observation of the other’s choices to generate a
simulated-other’s action prediction error encoded
in dorsomedial/dorsolateral prefrontal cortex. These
findings show that simulation uses a core prefrontal
circuit for modeling the other’s valuation to generate
prediction and an adjunct circuit for tracking behav-
ioral variation to refine prediction.

INTRODUCTION

A fundamental human ability in social environments is the simu-

lation of another person’s mental states, or hidden internal vari-

ables, to predict their actions and outcomes. Indeed, the ability

to simulate another is considered a basic component of mental-

izing or theory of mind (Fehr and Camerer, 2007; Frith and Frith,

1999; Gallagher and Frith, 2003; Sanfey, 2007). However,

despite its importance for social cognition, little is known about

simulation learning and its cognitive and neural mechanisms. A

commonly assumed account of simulation is the direct recruit-

ment of one’s own decision-making process tomodel the other’s

process (Amodio and Frith, 2006; Buckner and Carroll, 2007;

Mitchell, 2009). The direct recruitment hypothesis predicts that
one makes and simulates a model of how the other will act,

including the other’s internal variables, as if it is one’s own

process, and assumes that this simulated internal valuation

process employs the same neural circuitry that one uses for

one’s own process. As such, the hypothesis is parsimonious

and thus attractive as a simple explanation of simulation, but it

is also difficult to examine experimentally and therefore lies at

the heart of current debate in the social cognition literature

(Adolphs, 2010; Buckner and Carroll, 2007; Keysers and

Gazzola, 2007;Mitchell, 2009; Saxe, 2005). A definitive examina-

tion of this issue requires a theoretical framework that provides

quantitative predictions that can be tested experimentally.

We adopted a reinforcement learning (RL) framework to

provide a simple, rigorous account of behavior in valuating

options for one’s own decision-making. RL also provides a clear

model of one’s internal process using two key internal variables:

value and reward prediction error. Value is the expected reward

associated with available options, and is updated by feedback

from a reward prediction error—the difference between the pre-

dicted and actual reward. The RL framework is supported by

considerable empirical evidence including neural signals in

various cortical and subcortical structures that behave as pre-

dicted (Glimcher and Rustichini, 2004; Hikosaka et al., 2006;

Rangel et al., 2008; Schultz et al., 1997).

The RL framework or other parametric analyses have also

been applied to studies of decision making and learning in

various social contexts (Behrens et al., 2008; Bhatt et al., 2010;

Coricelli and Nagel, 2009; Delgado et al., 2005; Hampton et al.,

2008; Montague et al., 2006; Yoshida et al., 2010). These studies

investigated how human valuation and choice differ depending

on social interactions with others or different understandings

of others. They typically require that subjects use high-level

mentalizing, or recursive reasoning in interactive game situations

where one must predict the other’s behavior and/or what they

are thinking about themselves. Although important in human

social behavior (Camerer et al., 2004; Singer and Lamm, 2009),

this form of high-level mentalizing complicates investigation of

the signals and computations of simulation and thus makes it

difficult to isolate its underlying brain signals.

In the present study, we exploited a basic social situation for

our main task, equivalent to a first level (and not higher level)
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mentalizing process: subjects were required to predict the

other’s choices while observing their choices and outcomes

without interacting with the other. Thus, in our study, the same

RL framework that is commonly used to model one’s own

process provides a model to define signals and computations

relevant to the other’s process. We also used a control task in

which subjects were required to make their own value-based

decisions. Combining these tasks allowed us to directly

compare brain signals between one’s own process and the

‘‘simulated-other’s’’ process, in particular, the signals for reward

prediction error in one’s own valuation (control task) and the

simulated-other’s valuation (main task).

Moreover, the main task’s simple structure makes it relatively

straightforward to use the RL framework to identify additional

signals and computations beyond those assumed for simulation

by direct recruitment. Strongly stated, the direct recruitment

hypothesis assumes that the other’s process is simulated by

the same cognitive and neural process as one’s own, and

accordingly, in the main task, the simulation learning would be

expected to use only knowledge of the other’s outcomes, while

a weaker version of the hypothesis would assume only the

involvement of the cognitive process. Indeed, in many social

situations, onemay also observe and utilize the other’s decisions

or choices wherein the stronger hypothesis should be rejected.

We therefore examined whether an additional, undefined

learning signal based on information about the other’s choices

might also be used by humans to simulate the other’s valuation

process.

Employing behavior, fMRI, and computational modeling, we

examined the process of simulation learning, asking whether

one uses reward prediction errors in the same manner that one

does for self learning, and whether the same neural circuitry is

recruited. We then investigated whether humans utilize signals

acquired by observing variation in the other’s choices to improve

learning for the simulation and prediction of the other’s choice

behavior.

RESULTS

Behavior in Simulating the Other’s Value-Based
Decisions and Making One’s Own Decisions
To measure the behavior for learning to simulate the other,

subjects performed two decision-making tasks, a Control task

and an Other task (Figure 1A). The Other task was designed to

probe the subjects’ simulation learning to predict the other’s

value-based decisions, while the Control task was a reference

task to probe the subjects’ own value-based decisions. In both

tasks, subjects repeatedly chose between two stimuli.

In the Control task, only one stimulus was ‘‘correct’’ in each

trial, and this was governed by a single reward probability, i.e.,

the probability p was fixed throughout a block of trials, and the

reward probabilities for both stimuli were given by p and 1 � p,

respectively. When subjects made a correct choice, they

received a reward with a magnitude that was visibly assigned

to the chosen stimulus. As the reward probability was unknown

to them, it had to be learned over the course of the trials to maxi-

mize overall reward earnings (Behrens et al., 2007). As the

reward magnitude for both stimuli was randomly but visibly
1126 Neuron 74, 1125–1137, June 21, 2012 ª2012 Elsevier Inc.
assigned in each trial, it was neither possible nor necessary to

learn to associate specific reward magnitudes with specific

stimuli. In fact, because the magnitudes fluctuated across trials,

subjects often chose the stimulus with the lower reward proba-

bility, even in later trials.

In the Other task, subjects also chose between two stimuli

in each trial, but the aim was not to predict which stimulus

would give the greatest reward, but to predict the choices

made by another person (the other) who was performing the

Control task displayed on a monitor (Figure 1A). Subjects

were told that the other was a previous participant of the exper-

iment, but their choices were actually generated from an RL

model with a risk-neutral setting. Subjects gained a fixed

reward in the trial when their predicted choice matched the

other’s choice; thus, to predict the other’s choices, subjects

had to learn the reward probability that the other was learning

over the trials.

The subjects’ choices in the Control task were well fitted by

a basic RL model that combined the reward probability and

magnitude to compute the value of each stimulus (Equation 1

in Experimental Procedures) and to generate choice probabilities

(Figure S1A available online). Given that the reward magnitude

was explicitly shown in every trial, the subjects needed to learn

only the reward probability. Thus, the RL model was modified

such that the reward prediction error is focused on update

of the reward probability (Equation 2), not of value per se,

as in an earlier study employing this task (Behrens et al.,

2007). The RL model correctly predicted the subjects’ choices

with >90% accuracy (mean ± SEM: 0.9117 ± 0.0098) and

provided a better fit to the choice behavior than models using

only the reward probability or magnitude to generate choices

(p < 0.01, paired t test on Akaike’s Information Criterion [AIC]

value distributions between the two indicated models [Fig-

ure 1D]; see Supplemental Experimental Procedures and Table

S1 for more details), which is consistent with the earlier study

(Behrens et al., 2007).

To compare the subjects’ learning of the reward probability in

the Control and Other tasks, we plotted the percentage (aver-

aged across all subjects) of times that the stimulus with the

higher reward probability was chosen over the course of the trials

(Figure 1B, left) and averaged over all trials (Figure 1B, right).

During the Control task, subjects learned the reward probability

associated with the stimulus and employed a risk-averse

strategy. The percentage of times that the stimulus with the

higher reward probability was chosen gradually increased during

the early trials (Figure 1B, left, blue curve), demonstrating that

subjects learned the stimulus reward probability. The average

percentage of all trials in which the higher-probability stimulus

was chosen (Figure 1B, right, filled blue circle) was significantly

higher than the reward probability associated with that stimulus

(Figure 1B, right, dashed line; p < 0.01, two-tailed t test). This

finding suggests that subjects engaged in risk-averse behavior,

i.e., choosing the stimulus more often than they should if they

were behaving optimally or in a risk-neutral manner. Indeed, in

terms of the fit of the RL model (Supplemental Experimental

Procedures), the majority of subjects (23/36 subjects) employed

risk-averse behavior rather than risk-neutral or risk-prone

behavior.



Figure 1. Experimental Tasks and Behavioral Results

(A) Illustration of the experimental tasks: Control (left) and Other (right). In both tasks, each trial consisted of four phases: CUE, RESPONSE, INTERSTIMULUS

INTERVAL (ISI), and OUTCOME. For every trial in both tasks, subjects chose between two fractal stimuli, and the stimulus chosen by the subject (RESPONSE)

was indicated by a gray frame during the ISI. In the Control task, the ‘‘correct’’ (rewarded) stimulus of the subject was revealed in the center (OUTCOME). In the

Other task, the rewarded stimulus of the other was indicated in the center, and the other’s choice was indicated by a red frame.

(B) Mean percentages of choosing the stimulus with the higher reward probability (across subjects; n = 36) are shown as curves across trials (left; shaded regions

indicate the SEM) and as the averages (±SEM) of all trials (right) for the subjects’ choices in the Control (blue) and Other (red) tasks and the others’ choices in the

Other task (black). These curves were obtained by smoothing each individual’s choices with a Gaussian filter (1.25 trials) and then averaging the results for all

subjects. The dotted line on the right indicates the stimulus reward probability (75%). Asterisks above the horizontal lines indicate significant differences between

the indicated means (**p < 0.01; two-tailed paired t test; n.s., nonsignificant as p > 0.05), and asterisks at each point indicate significant differences from the

stimulus reward probability (*p < 0.05, **p < 0.01, two-tailed t test; n.s., nonsignificant as p > 0.05). Here, we note that the mean percentages of choosing

the stimulus with the higher reward probability for the subject and the other in the Other task were slightly lower than the reward probability associated with the

stimulus reward probability (subjects: p = 0.096; other: p < 0.05, two-tailed t test), which is reasonable given that the averaging included the early trials when

learning was still ongoing.

(C) Similar data averaged across all trials in a separate experiment (error bars = ± SEM). The two Other task conditions, Other I and Other II, correspond to the

other’s choices modeled by the RL model using risk-neutral and risk-averse parameters, respectively. **p < 0.01, significant differences between the indicated

pairs of data (two-tailed paired t test.); n.s., nonsignificant (p > 0.05).

(D) Models’ fit to behaviors in the Control (left) and Other (right) tasks. Each bar (±SEM) indicates the log likelihood of each model, averaged over subjects and

normalized by the number of trials (thus, a larger magnitude indicates a better fit to behavior). **p < 0.01, difference in AIC values between the two indicated

models (one-tailed paired t test over the AIC distributions). TheMG, PR, and RLmodels in the Control task are the RLmodel using rewardmagnitude only, reward

probability only, and both, respectively, to generate choices. In the Other task, S-free RL is a simulation-free RL, and S-RLsAPE, S-RLsRPE, and S-RLsRPE+sAPE are

Simulation-RL models using sAPE error only, sRPE only, and both sRPE and sAPE, respectively.
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In the Other task, subjects tracked the choice behavior of the

other. The percentage of times that the stimulus with the higher

reward probability was chosen by the subjects (Figure 1B, left,

red curve) appeared to follow the percentage of times that the

stimulus was chosen by the other (Figure 1B, left, black curve).

This behavior differed from that of the Control task in that the

percentage increased over trials but did so more gradually and

plateaued at a level below that in the Control task. Indeed, the

average percentage of times that the stimulus with the higher
reward probability was chosen by the subjects in the Other

task (Figure 1B, right, filled red circle) was not significantly

different (p > 0.05, two-tailed paired t test) from that chosen by

the other (Figure 1B, right, filled black circle), but was signifi-

cantly lower than that chosen by the subjects in the Control

task (p < 0.01, two-tailed paired t test). Given that the other’s

choices were modeled using an RL model with a risk-neutral

setting, the subjects’ choices in the Other task indicate that

they were not using risk-averse behavior as they did in the
Neuron 74, 1125–1137, June 21, 2012 ª2012 Elsevier Inc. 1127
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Control task but were behaving similarly to the other. Together,

these results suggest that the subjects were learning to simulate

the other’s value-based decision making.

Alternative interpretations, however, might also be possible.

For example, despite the task instruction to predict the other’s

choices, the subjects might have completely ignored the other’s

outcomes and choices and focused instead only on their own

outcomes. In this scenario, they might have performed the Other

task in the same way as they did the Control task, considering

the red frame in the OUTCOME phase (Figure 1A) not as the

other’s choice, as instructed, but as the ‘‘correct’’ stimulus for

themselves. Accordingly, such processing can be modeled by

reconfiguring the RL model used in the Control task, which is

referred to hereafter as simulation-free RL, because it directly

associates the options with the outcomes without constructing

the other’s decision-making process (Dayan and Niv, 2008).

This model did not provide a good fit to the behavioral data

(see the next section) and can therefore be rejected.

An alternate interpretation is that the subjects focused only on

the other’s outcomes, processing the other’s reward as their

own reward, which may have allowed them to learn the reward

probability from the assumed reward prediction error. But if

this were true, there should have been no difference in their

choice behavior between the Control and Other tasks. However,

their choice behavior in the Control task was risk-averse and

risk-neutral in the Other task, thus refuting this scenario. None-

theless, it can still be argued that processing the other’s reward

as their own might have caused the difference in risk behavior

between the two tasks; processing the other’s reward as their

own could have somehow suppressed the risk-averse tendency

that existed when they performed for their own rewards, thereby

rendering their choice behavior during the Other task similar to

the other’s risk-neutral behavior. If so, the subjects’ choice

behavior shouldalwaysbe risk-neutral in theOther task, irrespec-

tive of whether or not the other behaves in a risk-neutral manner.

We tested this prediction using another version of the Other

task in which the other was modeled by an RL model with

a risk-averse setting, and found that, contrary to the prediction,

the subjects’ behavior tracked that of the Other (Figure 1C). We

conducted an additional experiment, adding this ‘‘risk-averse’’

Other task as a third task. The subjects’ behavior in the original

two tasks replicated the findings of the original experiment. Their

choices in the third task, however, did not match those made

when the other was modeled by the risk-neutral RL model

(p < 0.01, two-tailed paired t test), but followed the other’s choice

behavior generated by the risk-averse RL model (p > 0.05,

two-tailed paired t test). Moreover, the subjects’ answers to

a postexperiment questionnaire confirmed that they paid atten-

tion to both the outcomes and choices of the other (Supple-

mental Experimental Procedures). These results refute the above

argument, and lend support to the notion that the subjects

learned to simulate the other’s value-based decisions.

Fitting Reinforcement Learning Models for Simulating
the Other’s Decision-Making Process to Behavior
during the Other Task
To determine what information subjects used to simulate the

other’s behavior, we fitted various computational models simu-
1128 Neuron 74, 1125–1137, June 21, 2012 ª2012 Elsevier Inc.
lating the other’s value-based decision making to the behavioral

data. The general form of these ‘‘simulation-based’’ RL models

was that subjects learned the simulated-other’s reward proba-

bility by simulating the other’s decision making process. At the

time of decision, subjects used the simulated-other’s values

(the simulated-other’s reward probability multiplied by the given

reward magnitude) to generate the simulated-other’s choice

probability, and from this, they could generate their own option

value and choice. As discussed earlier, there are two potential

sources of information for subjects to learn about the other’s

decisions, i.e., the other’s outcomes and choices.

If subjects applied only their own value-based decision

making process to simulate the other’s decisions, they would

update their simulation using the other’s outcomes; they would

update the simulated-other’s reward probability according to

the difference between the other’s actual outcome and the simu-

lated-other’s reward probability. We termed this difference the

‘‘simulated-other’s reward prediction error’’ (sRPE; Equation 4).

However, subjects may also use the other’s choices to facili-

tate their learning of the other’s process. That is, subjects may

also use the discrepancy in their prediction of the other’s choices

from their actual choices to update their simulation. We termed

the difference between the other’s choices and the simulated-

other’s choice probability the ‘‘simulated-other’s action predic-

tion error’’ (sAPE; Equation 6). In particular, we modeled the

sAPE signal as a signal comparable to the sRPE, with the two

being combined (i.e., multiplied by the respective learning rates

and then added together; Equation 3) to update the simulated-

other’s reward probability (see Figure S1A for a schematic

diagram of the hypothesized computational processes). Compu-

tationally, this is achieved such that the sAPE is obtained by

transforming the action prediction error that was generated first

at the ‘‘action’’ level (as the difference between the other’s

choice and the simulated-other’s choice probability [Equation 5;

Supplemental Experimental Procedures for more details]) back

into the value level.

With these considerations, we examined three simulation-

based RL models that learned the simulated-other’s reward

probability: a model using the sRPE and sAPE (Simulation-

RLsRPE+sAPE), a model using only the sRPE (Simulation-RLsRPE),

and a model using only the sAPE (Simulation-RLsAPE). As part

of the comparison, we also examined the simulation-free RL

model mentioned above.

By fitting each of these computational models separately to

the behavioral data and comparing their goodness of fit (Fig-

ure 1D; Table S1 for parameter estimates and pseudo-R2 of

each model), we determined that the Simulation-RLsRPE+sAPE
model provided the best fit to the data. First, all three Simula-

tion-RL models fitted the actual behavior significantly better

than the simulation-free RL model (p < 0.0001, one-tailed paired

t test over the distributions of AIC values across subjects). This

broadly supports the notion that subjects took account of and

internally simulated the other’s decision-making processes in

the Other task. Second, the Simulation-RLsRPE+sAPE model

(S-RLsRPE+sAPE model hereafter) fitted the behavior significantly

better than the Simulation-RL models using either of the predic-

tion errors alone (p < 0.01, one-tailed paired t test over the AIC

distributions; Figure 1D). This observation was also supported
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when examined using other types of statistics: AIC values,

a Bayesian comparison using the so-called Bayesian exceed-

ance probability, and the fit of amodel of all the subjects together

(Table S2). The S-RLsRPE+sAPE model successfully predicted

>90% (0.9309 ± 0.0066) of the subjects’ choices. Furthermore,

as expected from the behavioral results summarized above,

only three subjects (3/36) exhibited risk-averse behavior when

fit to the S-RLsRPE+sAPE model.

In separate analyses, we confirmed that the sRPE and sAPE

provided different information, and that both had an influence

on the subjects’ predictions of the other’s choices. First, both

errors (and also their learning rates), as well as the information

of the other’s actions and choices, were mostly uncorrelated

(Supplemental Information), indicating that separate contribu-

tions of the two errors are possible. Second, the subjects’ choice

behavior was found to change in relation to the sAPE (large or

small) and the sRPE (positive or negative) in the previous trials

and not to the combination of both (two-way repeated-measures

ANOVA: p < 0.001 for the sRPE main effect, p < 0.001 for the

sAPE main effect, p = 0.482 for their interaction; Figure S1B).

This result provides behavioral evidence for separate contribu-

tions of the two errors to the subjects’ learning.

We next compared the S-RLsRPE+sAPE model to several of its

variants. We first examined whether including risk parameters

at different levels affected the above finding. The original

S-RLsRPE+sAPE model included the risk parameter only in the

simulated-other’s level (computing the simulated-other’s choice

probability), but it is possible to consider two other variants

of this model: one including a risk parameter only in the

subject’s level (computing the subject’s choice probability) and

another including risk parameters in the subject’s and simu-

lated-other’s levels. Goodness-of-fit comparisons of the original

S-RLsRPE+sAPE model with these variants supported the use

of the original model (see the Supplemental Information). We

then examined the performance of another type of variant,

utilized in a recent study (Burke et al., 2010), that used the

sAPE not for learning but for biasing the subject’s choices

in the next trial (Supplemental Experimental Procedures).

Comparison of goodness of fit between this variant and the

original S-RLsRPE+sAPE model supported the superior fit of the

original model (p < 0.001, one-tailed paired t test). These

results suggest that the subjects learned to simulate the other’s

value-based decision-making processes using both the sRPE

and sAPE.

Neural Signals Reflecting the Simulated-Other’s Reward
and Action Prediction Errors
We next analyzed fMRI data to investigate which brain regions

were involved in simulating the other’s decision making

processes. Based on the fit of the S-RLsRPE+sAPE model to the

behavior in the Other task, we generated regressor variables of

interest, including the subject’s reward probability at the time

of decision (DECISION phase; Materials and Methods) and

both the sRPE and sAPE at the time of outcome (OUTCOME

phase), and entered them into our whole-brain regression anal-

ysis. Similarly, fMRI data from the Control task were analyzed

using regressor variables based on the fit of the RL model to

the subjects’ behavior.
BOLD responses that significantly correlated with the sRPE

were found only in the bilateral ventromedial prefrontal cortex

(vmPFC; p < 0.05, corrected; Figure 2A; Table 1). When these

signals were extracted using the leave-one-out cross-validation

procedure to provide an independent criterion for region of

interest (ROI) selection and thus ensure statistical validity

(Kriegeskorte et al., 2009), and then binned according to the

sRPE magnitude, the signals increased as the error increased

(Spearman’s correlation coefficient: 0.178, p < 0.05; Figure 2B).

As expected for the sRPE, vmPFC signals were found to be posi-

tively correlated with the other’s outcome and negatively corre-

lated with the simulated-other’s reward probability (Figure S2A).

As activity in the vmPFC is often broadly correlated with value

signals and ‘‘self’’ reward prediction error (Berns et al., 2001;

O’Doherty et al., 2007), we further confirmed that the vmPFC

signals truly corresponded to the sRPE and were not induced

by other variables. The vmPFC signals remained significantly

correlated with the sRPE (p < 0.05, corrected) even when the

following potential confounders were added to our regression

analysis: the simulated-other’s reward probability, the simu-

lated-other’s value for the stimulus chosen by the other as well

as by the subject, and the subject’s own reward prediction error

and reward probability. The vmPFC signals also remained signif-

icant even when the regressor variable of the sRPE was first

orthogonalized to the sAPE and then included in the regression

analysis (p < 0.05, corrected). Finally, instead of using the original

sRPE, we used the error with the reward magnitude (i.e., the

sRPEmultiplied by the reward magnitude of the stimulus chosen

by the other in each trial) as a regressor in whole-brain analysis.

The vmPFC was the only brain area showing activity that was

significantly correlated with this error (p < 0.05, corrected). These

results suggest that activity in the vmPFC exclusively contained

information about the sRPE.

The sAPE was significantly correlated with changes in BOLD

signals in the right dorsomedial prefrontal cortex (dmPFC;

p < 0.05, corrected), the right dorsolateral prefrontal cortex

(dlPFC; p < 0.05, corrected; Figure 2C), and several other regions

(Table 1). The dmPFC/dlPFC activity continued to be signifi-

cantly correlated with the action prediction error, even after

cross-validation (dmPFC: 0.200, p < 0.05; dlPFC: 0.248, p <

0.05; Figure 2D). The dmPFC/dlPFC signals remained significant

when potential confounders (the simulated-other’s reward prob-

ability of the stimulus chosen by the other as well as by the

subject) were added to the regression analyses (p < 0.05, cor-

rected) or when the regressor variable of the sAPE was first

orthogonalized to the sRPE and then included in the regression

analysis (p < 0.05, corrected). We also confirmed significant

activation in the dmPFC/dlPFC (p < 0.05, corrected) even

when the action prediction error at the action level was used

as a regressor variable instead of the error at the value level.

The dmPFC/dlPFC areas with significant activation considerably

overlapped with the areas originally associated with the signifi-

cant activation, using the error at the value level (Figure S2B).

Given these findings, we further hypothesized that if the

neuronal activity in these brain regions encodes the sRPE and

sAPE, then any variability in these signals across subjects should

affect their simulation learning and should therefore be reflected

in the variation in updating the simulated-other’s value using
Neuron 74, 1125–1137, June 21, 2012 ª2012 Elsevier Inc. 1129



Figure 2. Neural Activity Correlated with the Simulated-Other’s Reward and Action Prediction Errors

(A) Neural activity in the vmPFC correlated significantly with the magnitude of the sRPE at the time of outcome (Talairach coordinates: x = 0, y = 53, z = 4). The

maps in (A) and (C) are thresholded at p < 0.005, uncorrected for display.

(B) Crossvalidated, mean percent changes in the BOLD signals in the vmPFC (across subjects, n = 36; error bars = ± SEM; 7–9 s after the onset of the outcome)

during trials in which the sRPE was low, medium, or high (the 33rd, 66th, or 100th percentiles, respectively).

(C) Neural activity in the dmPFC (x = 6, y = 14, z = 52) and dlPFC (x = 45, y = 11, z = 43) correlated significantly with the magnitude of the sAPE at the time of

outcome (left: sagittal view; right: axial view).

(D) Crossvalidated, mean percent changes in the BOLD signals in the dmPFC and dlPFC (7–9 s after the onset of the outcome) during trials in which the sAPEwas

low, medium, or high.
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these errors. In other words, subjects with larger or smaller

neural signals in a ROI should exhibit larger or smaller behavioral

learning effects due to the error (i.e., display larger or smaller

learning rates associated with each error).

To test this hypothesis, we investigated the subjects’ group-

level correlations (Figure 3). Individual differences in the vmPFC

BOLD signals of the sRPE (measured by the estimated magni-

tude of the error’s regressor’s coefficient; called the ‘‘effect

size’’) were correlated with individual differences in the learning

rates of the sRPE (determined by the fit of the S-RLsRPE+sAPE
model to the behavioral data), while those in the dmPFC/dlPFC

BOLD signals of the sAPE were correlated with those in the

learning rates of the sAPE. First, the vmPFC activity was signifi-

cantly correlated with the learning rate of the sRPE (Figure 3A,

left; Spearman’s r = 0.360, p < 0.05), even though the explained

variance was relatively small (measured by the square of

Pearson’s correlation coefficient, r2 = 0.124). We conducted

two additional analyses to guard against potential subject

outliers that may have compounded the original correlation anal-

ysis. The correlation remained significant evenwhen removing all

outliers by a Jackknife outlier detection method (r = 0.447,

p < 0.005) or using the robust correlation coefficient (r0 = 0.346,

p < 0.05) (Supplemental Experimental Procedures). Thus, the

observed modulation of vmPFC activity lends correlative

support to our hypothesis that variations in the vmPFC signals

(putative signals of the sRPE) are associated with the behavioral

variability caused by learning using the sRPE across subjects.
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Second, the dmPFC/dlPFC activity was significantly correlated

with the learning rate of the sAPE (Figure 3B, r = 0.330,

p < 0.05; r2 = 0.140; and Figure 3C, r = 0.294, p < 0.05;

r2 = 0.230). The correlations remained significant after removing

the outliers (dmPFC, r = 0.553, p < 0.0005; dlPFC, r = 0.382,

p < 0.05) or using the robust correlation coefficient (dmPFC,

r0 = 0.377, p < 0.005; dlPFC, r0 = 0.478, p < 0.01). These results

support our hypothesis that the variation in the dmPFC and

dlPFC signals (putative signals of the sAPE) is associated with

the behavioral variability caused by learning using the sAPE

across subjects.

Shared Representations of Value-Based Decision
Making for the Self and Simulated-Other
We next investigated whether the pattern of vmPFC activity

was shared between the self and simulated-other’s decision

processes in two aspects. First, the vmPFC region was the

only region modulated by the sRPE in the Other task. The

sRPE was based on simulating the other’s process in a social

setting, generated in reference to the simulated-other’s reward

probability that they estimated to substitute for the other’s

hidden variable. We were then interested in knowing whether

the same vmPFC region contained signals for the subject’s

own rewardprediction error during theControl task in a nonsocial

setting without the simulation. Second, at the time of decision in

the Other task, subjects made their choices to indicate their

predictions of the other’s choices based on the simulation,



Table 1. Areas Exhibiting Significant Changes in BOLD Signals during the Other Task

Variable Region Hemi BA x y z t-statistic p Value

Simulated-other’s

reward prediction error

vmPFCa R/L 10/32 0 53 4 4.45 0.000083

Simulated-other’s

action prediction error

dlPFC (inferior frontal gyrus) R 44 45 11 43 4.84 0.000026

dmPFC (medial frontal gyrus/superior frontal gyrus) R 8 6 14 52 4.73 0.000036

TPJ/pSTS (inferior parietal lobule/supramarginal

gyrus/angular gyrus)

R 39/40 39 �55 37 4.54 0.000064

L 39/40 �45 �52 37 4.08 0.000246

Inferior frontal gyrus/superior temporal gyrus R 47/38 39 20 �5 5.08 0.000013

Thalamus R 6 �19 �2 4.88 0.000023

Lingual gyrus L 18 12 �73 �8 4.30 0.000131

Reward probability vmPFC R 10/32 3 56 4 6.16 0.000000

Postcentral gyrus/superior temporal gyrus L 2/22/42 �54 �28 16 6.03 0.000001

Postcentral gyrus/superior temporal gyrus R 2/22/42 54 �22 19 5.69 0.000002

Postcentral gyrus R 1 36 �19 55 5.77 0.000002

Cingulate gyrus L 31 �12 �1 34 4.42 0.000092

Insula L �39 �13 4 4.81 0.000028

Activated clusters observed following whole-brain analysis (p < 0.05, corrected) of fMRI. The stereotaxic coordinates are in accordance with Talairach

space, and the anatomical terms in the Region column are given accordingly. In the far right column, uncorrected p values at the peak of each locus are

shown. The regions of interest discussed in the text are shown in bold. vmPFC: ventromedial prefrontal cortex, dlPFC, dorsolateral prefrontal cortex;

dmPFC, dorsomedial prefrontal cortex; Hemi, hemisphere; BA, Brodmann area.
aThe vmPFC region referred to here and in Table 2 is in the vicinity of cluster 2 referred to by Beckmann and colleagues (Beckmann et al., 2009;

Rushworth et al., 2011). Upon a closer examination, the locus of the activated vmPFC region is actually located between the BA 10 and 32, and

resembles cluster 2, which is also known as area 14 m (Mackey and Petrides, 2010).

Neuron

Simulation Learning of Others’ Decisions
whereas in the Control task, they made their choices to obtain

the best outcome for themselves without the simulation. Thus,

we were also interested in whether the same vmPFC region con-

tained signals for the subjects’ decision variables in both types

of decisions. To address these issues, we examined the neural

correlates of these variables in whole-brain analyses during

both tasks and then conducted cross-validating ROI analyses.

We found that the vmPFCwasmodulated by signals related to

the subject’s own reward probability in the Other task. Whole-

brain analysis during the Other task identified BOLD signals in

several brain regions, including the vmPFC (p < 0.05, corrected;

Figure 4A), that were significantly modulated by the subject’s

reward probability (for the stimulus chosen by the subject) at

the time of decision (Table 1). The subject’s reward probability

is the decision variable closest to their choices, as it is the

farthest downstream in the hypothesized computational

processes for generating their choices, but it is also based on

simulating the other’s decision-making processes, in particular,

the simulated-other’s reward probability (Figure S1A). To deter-

mine whether the activation of the vmPFC that was significantly

modulated by the subject’s reward probability was compounded

by, or possibly rather due to, the simulated-other’s reward

probability, we conducted two additional whole-brain analyses:

when the simulated-other’s reward probability (for the stimulus

chosen by the subject) was added to the regression analysis

as a potential confounder and when the regressor variable

of the subject’s probability was first orthogonalized to the

simulated-other’s reward probability and then included in the

regression analysis together with the simulated-other’s reward

probability. In both cases, vmPFC activation remained signifi-
cantly modulated by the subject’s reward probability (p < 0.05,

corrected). These results indicate that at the time of decision

during the Other task, vmPFC activation was significantly modu-

lated by the subject’s reward probability.

For comparison, the significant vmPFC signals related to the

sRPE are also shown in Figure 4A. Here, we emphasize that

the sRPE was not the subject’s own reward prediction error

(the difference between the subject’s own outcome and his/her

own reward probability) during the Other task. Indeed, no region

was significantly activated by the subject’s own reward predic-

tion error during the Other task. This observation was confirmed

by an additional whole-brain analysis that was conducted in the

same way as the original analysis, except that we added the

regressor variable for the subject’s own reward prediction error

and removed the regressors for the sRPE and sAPE.

Whole-brain analysis during the Control task revealed signifi-

cant modulation of vmPFC activity (p < 0.05, corrected) by the

reward probability (for the stimulus chosen by the subject) at

the time of the decision and the reward prediction error at the

time of the outcome (Figure 4B; Table 2). These activities

remained significant (p < 0.05, corrected) when the following

potential confounders were added to the analysis: the reward

magnitude of the chosen stimulus with the reward probability

and the value and reward probabilities of the chosen stimulus

with the reward prediction error.

We next employed four crossvalidating ROI analyses to inves-

tigate whether the same vmPFC region contained signals that

were significantly modulated by all four of the variables of

interest: the subject’s own reward probability (RP) and the

sRPE in the Other task (Figure 4A) and the subject’s own RP
Neuron 74, 1125–1137, June 21, 2012 ª2012 Elsevier Inc. 1131



Figure 3. Relationship of Behavioral Variability by Learning Signals with Neural Variability in the vmPFC and the dmPFC/dlPFC

(A) Subject-group level correlation of vmPFC activity for the sRPE with the behavioral effect of the sRPE (the error’s learning rate, hsRPE ). vmPFC activity is

indicated by the error’s effect size averaged over the vmPFC region. Open circles denote potential outlier data points (subject) using Jackknife outlier detection.

(B) Correlation of dmPFC activity for the sAPE with the behavioral effect of the sAPE ðhsAPEÞ.
(C) Correlation of dlPFC activity for the sAPE with the behavioral effect of the sAPE ðhsAPEÞ.
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and reward prediction error (RPE) in the Control task (Figure 4B).

Whole-brain analyses defined an ROI in the vmPFC for each of

these variables. We then examined whether the neural activity

in a given ROI was significantly modulated by any or all of the

other three variables. Indeed, each of the given ROIs in the

vmPFC contained signals that were significantly modulated by

each of the variables defining the other three ROIs (either p <

0.05 or p < 0.005; Figure 4C). We also conducted the same anal-

ysis using a Gaussian filter (full width at half-maximum (FWHM) =

6 mm) for spatial smoothing during image data preprocessing

that was narrower than the original filter (FWHM = 8 mm). In

this case, three of the variables, not RP in the Control task,

had significant activation in the vmPFC (p < 0.05, corrected;

with RP in the Control task, cluster size = 21, which was less

than the 33 required for a corrected p < 0.05 with the narrower

Gaussian filter). However, when the ROI for RP in the Control

task was defined under the liberal threshold, we again observed

that the activity in a given ROI of one variable was significantly

modulated by each of the other three variables (p < 0.05). The

observation in the original analysis remained true (p < 0.05)

even if we used an orthogonalized variable in the ROI analysis

(see the Supplemental Information). These results indicate that

the same region of the vmPFC contains neural signals for the

subjects’ decisions in both the Control and Other tasks, as well

as signals for learning from reward prediction errors either with

or without simulation.

DISCUSSION

We examined behavior in a choice paradigm that to our knowl-

edge is new, in which subjects must learn and predict another’s

value-based decisions. As this paradigm involved observing the

other without directly interacting with them, we were able to

focus on the most basic form of simulation learning (Amodio

and Frith, 2006; Frith and Frith, 1999; Mitchell, 2009). Collec-

tively, our results support the idea of simulation of the other’s
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process by direct recruitment of one’s own process, but they

also suggest a critical revision to this direct recruitment hypoth-

esis. We found that subjects simultaneously tracked two distinct

prediction error signals in simulation learning: the simulated-

other’s reward and action prediction errors, sRPE and sAPE,

respectively. The sRPE significantly modulated signals only in

the vmPFC, indicating a prominent role of this area in simulation

learning by direct recruitment. However, we also found that

simulation learning utilized an accessory learning signal: the

sAPE with neural representation in the dmPFC/dlPFC.

Shared Representation between Self
and Simulated-Other
Our findings indicate that the vmPFC is a canonical resource for

a shared representation between the self and the simulated-

other in value-based decision making. By employing a within-

subjects design for the Control and Other tasks, the present

study provides, to our knowledge, the first direct evidence that

vmPFC is the area in which representations of reward prediction

error are shared between the self and the simulated-other.

Subjects used the sRPE to learn the other’s hidden variable

and the vmPFC was the only brain region with BOLD signals

that were significantly modulated by both the subject’s reward

prediction error in the Control task and the subject’s sRPE in

the Other task. Moreover, our findings also provide direct

evidence that the same vmPFC region is critical for the subject’s

decisions, whether or not the other’s process was simulated. In

both tasks, vmPFC signals were significantly modulated by the

subject’s decision variable (the subject’s reward probability) at

the time their decisions weremade. Mentalizing by direct recruit-

ment requires the same neural circuitry for shared representa-

tions between the self and the simulated-other. Even apart from

direct recruitment, shared representations between the self

and the other are considered to play an important role in other

forms of social cognition, such as empathy. Our findings, with

specific roles described for making and learning value-based



Figure 4. Shared Representations for Self and Other in the vmPFC

(A) (Left) vmPFC signals in the Other task significantly modulated by the subjects’ reward probability (RP) at the time of decision (x = 3, y = 56, z = 4; p < 0.05,

corrected). (Right) The sRPE (x = 0, y = 53, z = 4; p < 0.05, corrected) for the signal shown in Figure 2A. The maps in (A) and (B) are thresholded at p < 0.005,

uncorrected for display.

(B) (Left) vmPFC signals in the Control task significantly modulated by the subjects’ reward probability (RP) at the time of DECISION (x =�6, y = 56, z = 1; p < 0.05,

corrected). (Right) The subjects’ reward prediction error at the time of OUTCOME (x = 6, y = 53, z = �2; p < 0.05, corrected).

(C) Four ROI analyses showing the extent to which the vmPFC signals represent task-relevant information in the Other (red) and Control (blue) tasks, i.e., RP and

sRPE in the Other task and RP and RPE in the Control task. Each plot is labeled with the variable that defined the ROI examined in the vmPFC; the effect sizes of

the three other signals on the given ROI are plotted (see symbol legend at right). Points represent the mean (±SEM). *p < 0.05, **p < 0.005.
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decisions, indicate that vmPFC belongs to areas for shared

representations in various cognitive domains (Decety and

Sommerville, 2003; Keysers and Gazzola, 2007; Mobbs et al.,

2009; Rizzolatti and Sinigaglia, 2010; Singer et al., 2004).

For encoding learning signals, the vmPFC is likely more adap-

tive than the ventral striatum. In contrast to the vmPFC signals,

signals in the ventral striatum were significantly modulated

only by the subject’s own reward prediction error in the Control

task (Figure S3; Table 2). The vmPFCwas preferentially recruited

to simulate the other’s process in this study, concordant with

the general notion that the vmPFC may encode signals related

to reward prediction error when internal models are involved

(O’Doherty et al., 2007). The vmPFC may be more sensitive to

task demands. During the Other task, no area was significantly
Table 2. Areas Exhibiting Significant Changes in BOLD Signals duri

Variable Region Hemi BA

Reward prediction error vmPFC R 10/32

ventral striatum R

Reward probability vmPFC L 10/32

Insula R

Activated clusters observed following whole-brain analysis (p < 0.05, correc

see the legend to Figure S3.
modulated by the subject’s own reward prediction error. This

might be simply due to a limitation in the task design, as the

fixed reward size for subjects might have limited detection of

reward prediction error. Another aspect, however, is that the

subject’s own reward prediction error was not as useful as the

sRPE for learning to predict the other’s choices in this task.

Also, the vmPFC may be specifically recruited when subjects

used the other’s outcomes for learning, as in the Other task,

rather than when they vicariously appreciated the other’s

outcomes. The activity in the ventral striatum might be evoked

only when the other’s outcomes aremore ‘‘personal’’ to subjects

(Moll et al., 2006), e.g., when they are comparing their own

outcomes to the other’s outcomes (Fliessbach et al., 2007;

Rilling et al., 2002) or when there are similarities between their
ng the Control Task

x y z t-statistic p Value

6 53 �2 3.95 0.000360

(local registration) 4.48 0.000076

�6 56 1 4.11 0.000224

45 �16 7 4.81 0.000028

ted) of fMRI. Table format is the same as for Table 1. For local registration,
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own and the other’s personal characteristics (Mobbs et al.,

2009).

The sRPE was a specific form of reward prediction error

related to the other, made in reference to the simulated-other

and used for learning their hidden variables. Different forms of

the other’s reward prediction error also modulated activity in

the vmPFC. Activity in the vmPFCwas correlatedwith an ‘‘obser-

vational’’ reward prediction error (the difference between the

other’s stimulus choice outcome and the subject’s value of the

stimulus) (Burke et al., 2010; Cooper et al., 2011). This error indi-

cated which stimulus was more likely to be rewarding to

subjects, whereas in the study presented here, the sRPE indi-

cated which stimulus was more likely to be rewarding to the

other. vmPFC signals have also been reported to be modulated

by different perceptions of the other’s intentions (Cooper et al.,

2010). An interesting avenue for future research is to deepen

our understanding of the relationship between, and use of,

different types of vicarious reward prediction errors involved in

forms of fictive or counterfactual learning (Behrens et al., 2008;

Boorman et al., 2011; Hayden et al., 2009; Lohrenz et al., 2007).

Refinement of Simulation Learning: Action-Prediction
Error
Our findings demonstrate that during simulation, humans use

another learning signal—the sAPE—tomodel the other’s internal

variables. This error was entirely unexpected based on the direct

recruitment hypothesis, and it indicates that simulation is

dynamically refined during learning using observations of the

other’s choices, thus also rejecting the stronger hypothesis.

The sAPE significantly modulated BOLD signals in the

dmPFC/dlPFC and several other areas (Table 1), but the sRPE

did not. This activation pattern suggests that these areas may

have a particular role in utilizing the other’s choices rather than

the other’s outcomes (Amodio and Frith, 2006). This view is

convergent with earlier studies in a social context, in which

subjects considered the other’s behaviors, choices, or inten-

tions, but not necessarily their outcomes (Barraclough et al.,

2004; Hampton et al., 2008; Izuma et al., 2008; Mitchell et al.,

2006; Yoshida et al., 2010, 2011), and also with studies in nonso-

cial settings (Gläscher et al., 2010; Li et al., 2011; Rushworth,

2008). Among the other areas, the temporoparietal junction

and posterior superior temporal sulcus (TPJ/pSTS) were note-

worthy. Our results support a role for the TPJ/pSTS in utilizing

the other’s choices, consistent with previous studies using RL

paradigms in social settings (Behrens et al., 2008; Hampton

et al., 2008; Haruno and Kawato, 2009).

Our findings that the dmPFC/dlPFC and TPJ/pSTS were

significantly activated by the sAPE in both the value and action

levels provide an important twist on the distinction between

action and outcome encoding or between action and outcome

monitoring (Amodio and Frith, 2006). The signals in those areas

represented a result of action monitoring, but were also in

a form that was immediately available for learning outcome

expectation (the simulated-other’s reward probability). It is

intriguing to speculate that all of the processes involved in this

error, from generating (in the action level) and transforming

(from the action to value level) to representing the error as

a learning signal for valuation (in the value level), may occur
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simultaneously in these areas. This would allow the error to be

flexibly integrated with other types of processing, thereby

leading to better andmore efficient learning and decisionmaking

(Alexander and Brown, 2011; Hayden et al., 2011).

The sAPE was a specific form of action prediction error related

to the other, which was generated in reference to the simulated-

other’s choice probability and used to learn the simulated-

other’s variable. Activity in the dmPFC/dlPFC can also be

modulated by different forms of action prediction error related

to the other and to improvement of the subject’s own valuation

(Behrens et al., 2008; Burke et al., 2010). Burke et al. (2010) found

that activity in the dlPFC was modulated by an observational

action prediction error (the difference between the other’s actual

stimulus choice and the subject’s own choice probability).

Behrens et al. (2008) found that activity in the dmPFC was

significantly modulated by the ‘‘confederate prediction error’’

(the difference between the actual and expected fidelity of the

confederate). Their error was used to learn the probability that

a confederate was lying in parallel to, but separate from, the

learning of the subject’s stimulus-reward probability. At the

time of decision, subjects could utilize the confederate-lying

probability to improve their own decisions. In contrast, in our

Other task, subjects needed to predict the other’s choices.

One possible interpretation is that dmPFC and dlPFC differen-

tially utilize the other’s action prediction errors for learning,

drawing on different forms of the other’s action expectation

and/or frames of reference, depending on task demands (Baum-

gartner et al., 2009; Cooper et al., 2010; de Bruijn et al., 2009;

Huettel et al., 2006).

Our findings support a posterior-to-anterior axis interpretation

of the dmPFC signals with an increasing order of abstractness to

represent the other’s internal variable (Amodio and Frith, 2006;

Mitchell et al., 2006). The sAPE was in reference to the other’s

actual choices, whereas the confederate prediction error was

in reference to the truth of the other’s communicative intentions

rather than their choices. Correspondingly, a comparison of the

dmPFC regions activated in this study with those in Behrens

et al. (2008) suggests that the dmPFC region identified in this

study was slightly posterior to the region they identified. Further-

more, our findings also support an axis interpretation between

the vmPFC and dmPFC. The sRPE is a more ‘‘inner,’’ and thus

more abstract, variable for simulation than the sAPE. While the

sRPE and sAPE were generated with the simulated-other’s

reward and choice probability, respectively, this choice proba-

bility was generated in each trial by using the reward probability.

Altogether, we propose that the sAPE is a general, critical

component for simulation learning. The sAPE provides an addi-

tional, but also ‘‘natural,’’ learning signal that could arise from

simulation by direct recruitment, as it was readily generated

from the simulated-other’s choice probability given the subject’s

observation of the other’s choices. This error should be useful for

refining the learning of the other’s hidden variables, particularly if

the other behaves differently from the way one would expect for

oneself, i.e., the prediction made by direct recruitment simula-

tion (Mitchell et al., 2006). As such, we consider this error and

the associated pattern of neural activation to be an accessory

signal to the core simulation process of valuation occurring in

the vmPFC, which further suggests a more general hierarchy of
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learning signals in simulation apart from and beyond the sAPE.

As the other’s choice behavior in this study was only related to

a specific personality or psychological isotype, being risk

neutral, it will be interesting to see whether and how the sAPE

is modified to facilitate learning about the other depending on

different personality or psychological isotypes of the other.

Also, in this study, because we chose to investigate the sAPE

as a general signal, learning about the nature of the other’s risk

behavior or risk parameters in our model was treated as

secondary, being fixed in all trials. However, subjects might

have learned the other’s risk parameter and/or adjusted their

own risk parameter over the course of the trials. How these types

of learning complement simulation learning examined in the

present study shown here will require further investigation.

Together, we demonstrate that simulation requires distinct

prefrontal circuits to learn the other’s valuation process by direct

recruitment and to refine the overall learning trajectory by

tracking the other’s behavioral variation. Because our approach

used a fundamental form of simulation learning, we expect that

our findings may be broadly relevant to modeling and predicting

the behavior of others in many domains of cognition, including

higher level mentalizing in more complex tasks involving social

interactions, recursive reasoning, and/or different task goals.

We propose that the signals and computations underlying higher

level mentalizing in complex social interactions might be built

upon those identified in the present study. It remains to be deter-

mined how the simulated-other’s reward and action prediction

error signals are utilized and modified when task complexity is

increased. In this regard, we suggest that the simulation process

and the associated neural circuits identified in this study can be

conceptualized as a cognitive scaffold upon which multiple

context-dependent mentalizing signals may be recruited as

available learning signals and may thus contribute to prediction,

depending on the subject’s goals in the social environment.

EXPERIMENTAL PROCEDURES

Weprovide amore comprehensive description of thematerials andmethods in

the Supplemental Experimental Procedures.

Subjects

Thirty-nine healthy, normal subjects participated in the fMRI experiment.

Subjects received monetary rewards proportional to the points they earned

in four test sessions (two fMRI scan sessions, from which behavioral and

imaging data are reported in the main text, and two test sessions not involving

fMRI, for which data are not shown) in addition to a base participation fee. After

excluding three subjects based on their outlier choice behaviors, the remaining

36 subjects were used for subsequent behavioral and fMRI data analyses.

A separate behavioral experiment involved 24 normal subjects, and excluding

two outlier subjects, the remaining 22 subjects were used for the final analysis

(Figure 1C). All subjects gave their informedwritten consent, and the studywas

approved by RIKEN’s Third Research Ethics Committee.

Experimental Tasks

Two tasks, the Control and Other tasks, were conducted (Figure 1A). The

Control task was a one-armed bandit task (Behrens et al., 2007). The two

stimuli with randomly assigned reward magnitudes, indicated by numbers in

their centers, were randomly positioned at the left or right of the fixation point.

In every trial, the reward magnitudes were randomly sampled, independently

of the stimuli, but with an additional constraint that the same stimulus was

not assigned the higher magnitude in three successive trials; this constraint
was introduced, in addition to reward magnitude randomization, to further

ensure that subjects did not repeatedly choose the same stimulus (see Fig-

ure S1D for control analyses). After subjects made their choice, the chosen

stimulus was immediately highlighted by a gray frame. Later, the rewarded

stimulus was revealed in the center of the screen. Subjects were not informed

of the probability, but were instructed that the reward probabilities were inde-

pendent of the reward magnitudes.

In the Other task, subjects predicted the choice of another person. From the

CUE to the ISI phase, the images on the screen were identical to those in

the Control task in terms of presentation. However, the two stimuli presented

in the CUE were generated for the other person performing the Control task.

The subjects’ prediction of the choice made by the other was immediately

highlighted by a gray frame. In the OUTCOME, the other’s actual choice was

highlighted by a red frame, and the rewarded stimulus for the other was indi-

cated in the center. When the subjects’ predicted choice matched the other’s

actual choice, they earned a fixed reward. The RL model generated the

choices of the other on a risk-neutral basis (for the fMRI experiment), so that

the choices generated by the model approximately mimicked average (risk-

neutral) human behavior, allowing us to use the same type of the other’s

behavior for all subjects (see Figure S1C for a separate behavioral analysis

of this approach).

For the experiment in the MRI scanner, two tasks, Control and Other, were

employed. Three conditions, one Control and two Others, were used in a

separate behavioral experiment (Figure 1C). The settings for the Control and

‘‘Other I’’ task were the same as in the fMRI experiment, but in the ‘‘Other II’’

task, a risk-averse RL model was used to generate the other’s choices.

Behavioral Analysis and Computational Models Fitted to Behavior

Several computational models, based on and modified from the Q learning

model (Sutton and Barto, 1998), were fit to the subjects’ choice behaviors in

both tasks. In the Control task, the RL model, being risk neutral, constructed

Q values of both stimuli; the value of a stimulus was the product of the stimulus’

reward probability, pðAÞ (for stimulus A; the following description is made for

this case), and the reward magnitude of the stimulus in a given trial, RðAÞ,

QA =pðAÞRðAÞ: (1)

To account for possible risk behavior of the subjects, we followed the

approach of Behrens et al. (2007) by using a simple nonlinear function (see

the Supplemental Information for more details and for a control analysis of

the nonlinear function). The choice probability is given by qðAÞ= fðQA �QBÞ,
where f is a sigmoidal function. The reward prediction error was used to

update the stimulus’ reward probability (see the Supplemental Information

for a control analysis),

d= r � pðAÞ; (2)

where r is the reward outcome (1 if stimulus A is rewarded and 0 otherwise).

The reward probability was updated using pðAÞ)pðAÞ+ hd.

In the Other task, the S-RLsRPE+sAPE model computed the subject’s choice

probability using qðAÞ= fðQA �QBÞ; here, the value of a stimulus is the product

of the subject’s fixed reward outcome and their reward probability based on

simulating the other’s decision making, which is equivalent to the simulated-

other’s choice probability: qo(A) = f(QO(A) � QO(B)), wherein the other’s value

of a stimulus is the product of the other’s reward magnitude of the stimulus

and the simulated-other’s reward probability, pOðAÞ. When the outcome for

the other ðrOÞ was revealed, the S-RLsRPE+sAPE model updated the simu-

lated-other’s reward probability, using both the sRPE and the sAPE,

pOðAÞ)pOðAÞ+hsRPEdOðAÞ+ hsAPEsOðAÞ; (3)

where the two h’s indicate the respective learning rates. The sRPE was

given by

doðAÞ= ro � poðAÞ: (4)

The sAPE was defined in the value level, being comparable to the sRPE.

After being generated first in the action level,

s0
OðAÞ= IAðAÞ � qOðAÞ= 1� qOðAÞ; (5)
Neuron 74, 1125–1137, June 21, 2012 ª2012 Elsevier Inc. 1135
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the sAPEwas obtained by a variational transformation, pulled back to the value

level,

sOðAÞ= s0
O

ðAÞ
K

; (6)

(see the Supplemental Information for the algebraic expression of K). The two

other simulation-RL models only used one of the two prediction errors. The

simulation-free RL model is described in the Supplemental Information.

We used a maximum-likelihood approach to fit the models to the individual

subject’s behaviors and AIC to compare their goodness of fit, taking into

account the different numbers of the models’ parameters. For a given model’s

fit to each subject’s behavior in a task, the inclusion of the risk parameter was

determined using the AIC value to compare the fit by two variants of the given

model, with or without including the risk parameter.

fMRI Acquisition and Analysis

fMRI images were collected using a 4 T MRI system (Agilient Inc., Santa Clara,

CA). BOLD signals were measured using a two-shot EPI sequence. High- and

low-resolution whole-brain anatomical images were acquired using a T1-

weighted 3D FLASH pulse sequence. All images were analyzed using Brain

Voyager QX 2.1 (Brain Innovation B.V., Maastricht, The Netherlands). Func-

tional images were preprocessed, including spatial smoothing with a Gaussian

filter (FWHM = 8 mm). Anatomical images were transformed into the standard

Talairach space (TAL) and functional imageswere registered to high-resolution

anatomical images. All activations were reported based on the TAL, except for

the activation in the ventral striatum reported in Figure S3 (see legend).

We employed model-based analysis to analyze the BOLD signals. The main

variables of interest as the regressors for our regression analyses were, for the

Control task, the reward probability of the stimulus chosen in the DECISION

period (defined as the period from the onset of CUE until subjects made their

responses in the RESPONSE period) and the reward prediction error in the

OUTCOME period. For the Other task, the main variables of interest were

the subject’s reward probability for the stimulus chosen in the DECISION

period, and the sRPE and sAPE in the OUTCOME period. Random-effects

analysis was employed using a one-tailed t test. Significant BOLD signals

were reported based on corrected p values (p < 0.05) using a family-wise error

for multiple comparison corrections (cluster-level inference). For cross-vali-

dated percent changes in the BOLD signals (Figures 2B and 2D), we followed

a previously described leave-one-out procedure (Gläscher et al., 2010). For the

correlation analysis (Figure 3), we calculated Spearman’s correlation coeffi-

cient and tested its statistical significance using a one-tailed t test given our

hypothesis of positive correlation (see the Supplemental Information for two

additional analyses).

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, two tables, and Supple-

mental Experimental Procedures and can be found with this article online at

doi:10.1016/j.neuron.2012.04.030.
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Figure S1 – related to Figure 1: Schematic diagrams of decision making processes used in 

this study and additional behavioral results  

(A) Schematic diagram for value-based decision making processes in both the Control and 

Other tasks based on a reinforcement learning (RL) model (a, b, respectively). (a) Box indicates 

the subjects’ (S’s) internal decision making process. As modeled by the RL, at the time of 

decision, subjects use the learned values of options to generate the choice probability of the 

stimulus, and accordingly make a choice decision. When the outcome is presented, the value of 

the chosen option (or the stimulus reward probability) is updated, using reward prediction error 

(RPE: discrepancy between S’s value and actual outcome). (b) Decision making process of 

subjects during the Other task is modeled by Simulation-RLsRPE+sAPE (S-RLsRPE+sAPE) model. The 

large box on the left indicates the subject’s internal process; the smaller box inside indicates the 

other’s (O’s) internal decision making process being simulated by the subject. The large box on 

the right, outlined by a thick dashed line, corresponds to what the other is ‘facing in this task,’ 

and is equivalent to what subjects were facing in the Control task (compare with the schematic 

in (a)). The hatched box inside corresponds to the other’s internal process, which is hidden from 

the subjects. As modeled by the S-RLsRPE+sAPE, at the time of decision, subjects use the learned 

simulated-other’s value to first generate the simulated-other’s choice probability (O’s Choice 

Prob), based on which they generate their own value (S’s Value) and the subject’s choice 

probability for predicting the other’s choice (S’s Choice Prob). Accordingly, subjects then 

predict the other’s choice. Once the outcome is shown, subjects update the simulated-other’s 

value using the simulated-other’s reward and action prediction errors (sRPE and sAPE), 

respectively; sRPE is the discrepancy between the simulated-other’s value and the other’s actual 

outcome, and sAPE is the discrepancy between the simulated-other’s choice probability and the 

other’s actual choice, in the value level. The simulated-other’s action prediction error is first 
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generated in the action level (denoted by sAPE’ in the figure) and transformed (indicated by T 

in the open circle) to the value level, becoming the sAPE to update the simulated-other’s value, 

together with the sRPE. 

(B) Effects of simulated-other’s reward and action prediction errors on subjects’ choice 

behavior on the next trials during the fMRI experiment. We show the mean percentages (±SEM) 

of times (across subjects; n=36) that the subject’s prediction of the other’s chosen option in the 

next trial coincided with the other’s chosen option in the previous trial in each of the four cases: 

when the reward prediction error is negative (two left bars) or positive (two right bars), and 

when the action prediction error is smaller (open bars) or larger (filled bars) than the median. 

(C) Subjects’ behavior when the other’s choices were generated by risk-neural RL (O-RL), 

risk-neutral humans (O-human), or a random-chooser (O-random). The results of this additional 

experiment support the rationale for the use of the fitted risk-neutral RL model in the main 

report. (a) Mean percentages (±SEM) of choosing the stimulus with the higher reward 

probability (across subjects; n=17); shown as the averages of all trials. Asterisks above the 

horizontal lines indicate significant differences between the indicated means (**P<0.01; 

two-tailed paired t-test; n.s., non-significant as P> 0.05). The subjects behaved similarly, 

regardless of whether the other’s choices were generated by the O-RL or an O-human, but they 

behaved differently when the other’s choices were randomly generated. Although not shown in 

the panel, here we note a baseline result; the O-RL-generated other’s choices of the stimulus 

with the higher reward probability were not significantly different from the O-human-generated 

other’s choices (P > 0.05, two-tailed paired t-test), but were significantly different from the 

O-random-generated other’s choices (P < 0.001). (b) Models’ fit to behaviors. Each bar (±SEM) 

indicates the log likelihood of each model, averaged over subjects and normalized by the 

number of trials (thus a larger magnitude indicates a better fit to behavior). *P<0.05, one-tailed 
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paired t-test over AIC distributions. The comparison indicates that S-RLsRPE+sAPE model best fit 

all three choice conditions (O-RL, O-human and O-random). Abbreviations for each model are 

the same in Figure 1D. See Supplemental Experimental Procedures for further details of this 

experiment. 

(D) Subjects’ behavior with and without an additional constraint on reward magnitude 

randomization. The results of this additional experiment demonstrate that the subjects’ 

behaviors in both the Control and Other tasks did not significantly differ with or without the 

additional constraint. (a) Mean percentages (±SEM) of choosing the stimulus with the higher 

reward probability (across subjects; n=21) with and without the constraint are shown in the 

same format as panel C; n.s., non-significant as P> 0.05. Blue for the Control task and red for 

the Other task. In both tasks, the subjects’ behaviors were not significantly different under the 

two conditions. (b) Models’ fit to behaviors in the Control (left) and Other (right) tasks. We 

show the log likelihood of each model in the same format as panel C (b); *P<0.05 **P<0.01, 

one-tailed paired t-test over AIC distributions. In both tasks, the best fitted model reported in the 

main text was also the best fitted model in the condition without the constraint. See 

Supplemental Experimental Procedures for further details of this experiment.  
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Figure S2 related to Figure 2: Additional results of the neural correlates of simulated 

other’s reward and action prediction errors 

(A) Time course of the component parts of the neural correlates of the simulated-other’s reward 

prediction error in the vmPFC. Time course of effect sizes of the other’s reward outcome 

(orange) and the simulated-other’s reward probability (pink); the corresponding colored shading 

indicates ±SEM (n=36). To generate this plot, we first defined an ROI in the vmPFC based on 

the BOLD signals that were significantly correlated with the simulated-other’s reward 

prediction error (Figure 2A). To investigate the two components of the error (the 

simulated-other’s reward prediction error equals “the other’s reward outcome (1 if the 

other-chosen stimulus is the rewarded stimulus, or 0 otherwise)” minus “the simulated-other’s 

reward probability”), we transformed the BOLD signals in the ROI into z-scores over trials for 

each subject. Each time slice had a 200-ms resolution starting at, and aligned to, the onset of the 

OUTCOME phase and ended 16 s later. We then performed a first-order linear regression, 

“z-scored BOLD signals = a Other’s Reward Identity + b Simulated-Other’s Reward 

Probability” in each time slice for each subject. The mean and SEM of the estimated 

coefficients (effect sizes) for a  and b over subjects were then plotted (orange and pink curves 

correspond to a  and b, respectively). Gray shading indicates the OUTCOME duration. The 
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thick horizontal lines in the corresponding colors at the bottom indicate the periods during 

which the effect was significantly different from zero (p < 0.05, t-test). The transformation to 

z-scores mentioned above was employed so that the effect sizes could be compared among 

different time slices. We used a one-tailed t-test to examine the significance of the effect size in 

each time slice against the null hypothesis that it equaled zero.  

(B) Neural activity significantly modulated (P < 0.05, corrected) by the action prediction error 

in two levels. Activity modulated by the ‘after-transformed’ (in value level) action prediction 

error (green), by the untransformed (in the action level) action prediction error (purple), and by 

the overlap of two activations (dark blue); the action prediction error in the action level 

significantly modulated BOLD signals (P < 0.05, corrected) in the dorsomedial prefrontal 

cortex (dmPFC; TAL x=6, y=26, z=46), the right dorsolateral prefrontal cortex (dlPFC; x=30, 

y=8, z=46), and the bilateral temporoparietal junction and posterior superior temporal sulcus 

(TPJ/pSTS; x=45, y= -52, z=43 and x=-39, y=-67, z=46), in addition to some other significantly 

modulated areas. The solid, dotted-dashed, and dashed ovals highlight the overlap in the dmPFC, 

the right dlPFC and the TPJ/pSTS, respectively. The maps are thresholded at P < 0.005, 

uncorrected for display. 
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Figure S3 related to Figure 4: Reward prediction error signals in the ventral striatum 

(vStr) during the Control task.  

(A) BOLD signals observed in the vStr reflecting the reward prediction error at the time of 

OUTCOME in the Control task (P < 0.05, corrected; Table 2; The map is thresholded at P < 

0.005, uncorrected for display). To precisely assess striatal activity, we used a local registration 

procedure focusing on the anterior striatum. The normalized striatum space was first defined 

with reference to four landmarks (the anterior commissure and the most anterior, most dorsal, 

and most lateral points of the striatum), and then the functional images were transformed into 

that space.  

(B) Effect sizes of the vStr activity (error bars= ±SEM; n=36) representing the subjects’ reward 

probability in the Other task (RP; P=0.13, one-tailed t-test), the simulated-other’s reward 

prediction error in the Other task (sRPE; P=0.80), and the reward probability in the Control task 

(RP; P=0.13). n.s. = not significant.  
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Supplemental Tables  

Learning rate,  Stochasticity in Risk parameter
the choices,  pseudo-R 2

Median

25    percentile

75    percentile

th

th



RL

PR

Median

25    percentile

75    percentile

th

th

0.054

0.084

0.099

0.058

0.077

0.104

0.091

0.121

0.202

2.517

3.178

4.125

1.000

1.388

2.700

1.000

1.000

1.000

0.628

0.725

0.786

0.257

0.313

0.415

Table S1 related to Figure 1. Best fitting parameter estimates

Learning rate,  Stochasticity in Risk parameter
the choices,  pseudo-R 2

Median

25    percentile

75    percentile

th

th



Median

25    percentile

75    percentile

th

th

0.046

0.073

0.108

-

-

-

0.078

0.097

0.105

1.000

1.000

1.000

0.615

0.720

0.752

MG

Median

25    percentile

75    percentile

th

th

-

-

-

0.014

0.019

0.025

-

-

-

0.123

0.202

0.255

Control task

Other task

Median

25    percentile

75    percentile

th

th

-

-

-

0.014

0.072

0.180

0.073

0.093

0.104

0.529

0.581

1.000

0.569

0.686

0.733

sRPE sAPE

0.026

0.051

0.089

0.001

0.011

0.057

0.093

0.102

0.126

0.610

1.000

1.000

0.659

0.735

0.781

S-free RL

Median

25    percentile

75    percentile

th

th

0.014

0.044

0.063

0.030

0.046

0.064

1.000

1.000

1.000

0.123

0.175

0.230

S-RL

S-RL

S-RL

sRPE + sAPE

sAPE

sRPE

 

The best-fitting parameter estimates for each model are shown as the median plus the 1st and 3rd 

quartiles across subjects. Also shown are medians and quartiles for the pseudo-
2R  at the best 

fitting parameters, a normalized measure of the degree to which the model explained the choice 

data (Daw et al., 2006). Abbreviations for each model are the same in Figure 1D.  
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Table S2 related to Figure 1. Model comparison among S-RL                , S-RL        and S-RL        models

AIC

S-RL

S-RL

TotalMean SEM
# Subjects
favoring FS-RL Paired t-test

40.6 2.3

43.0 2.4

1461.1

1547.0 20 t(35) = 3.25
P = 0.0013

- -

Fit all subjects
together

corrected AIC

TotalMean SEM
# Subjects
favoring FS-RL Paired t-test

41.0 2.3

43.2 2.4

1475.2

1553.9 19 t(35) = 2.98
P = 0.0026

- -

Model Evidence (negative, log)

S-RL

S-RL

Total (GBF)Mean SEM
# Subjects
favoring FS-RL Probability

19.8 1.3

21.2 1.3

711.2

763.0 24

1.00-

1618.8

1625.5

Exceedance

S-RL 55.5 5.5 1997.4 23 55.7 5.5 2005.8 231778.5t(35) = 3.20
P = 0.0015

t(35) = 3.17
P = 0.0016

S-RL 22.6 1.3 813.1 28

0.00

0.00

sRPE+ sAPE sAPEsRPE

sRPE + sAPE

sAPE

sRPE

sRPE + sAPE

sAPE

sRPE

 

Results of comparing the goodness of fit of the S-RLsAPE, S-RLsRPE, and S-RLsRPE+sAPE models to 

choice behavior in the Other task (abbreviations are the same as in Figure 1D). AIC and 

corrected AIC (cAIC=AIC+    2 1 1k k n k   , where k  and n  are the number of free 

parameters and the sample size, respectively (Burnham and Anderson, 2002); smaller values 

indicate a better fit): the average and total values across subjects; the number of subjects 

favoring S-RLsRPE+sAPE; and paired t-test over the distribution of individual subject’s differences; 

AIC fitted to all subjects together (assuming a single set of parameters for all subjects). 

Bayesian model comparison based on the negative log model evidence (smaller values indicate 

a better fit): the average values; the total values, often called a group Bayes factor (GBF); the 

number of subjects favoring S-RLsRPE+sAPE; and the Bayesian exceedance probability (Stephan et 

al., 2009). The so-called model evidence of each model’s fit to each subject’s behavior was 

obtained using the variational Bayes method (with factorized approximations) to integrate out 

the model’s free parameters (Bishop, 2006); prior distributions of the parameters were assumed 

to be uniform (with ranges of [0,0.5] for  , [0,1] for  RPE RPE APEw     , [ 7,15]  

for  log  ). To compute the exceedance probabilities, we used the spm_BMS routine from 

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). 
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Supplemental Experimental Procedures 

 

Subjects 

Thirty-nine healthy, normal subjects (11 females, 28 males; age range: 20-35 years; mean ± 

standard deviation, 22.6 ± 4.0) participated in the fMRI experiment. Subjects were pre-assessed 

to exclude those with any previous history of neurological or psychiatric illness. Before the 

experiment, subjects were instructed about the experimental tasks, and informed that they would 

receive monetary rewards proportional to the average of all the points they earned in four test 

sessions (two fMRI scan sessions, from which the results of both behavioral and imaging data 

are reported in the main text, and two other sessions not involving fMRI, the results of which 

were not reported in the main text; see below) in addition to a base participation fee (6000 yen). 

The total monetary reimbursement in Yen equaled 200 � (average points – 20) + 6000. A 

separate behavioral experiment (see Figure 1C) involved 24 normal subjects (11 females, 13 

males; age range, 18-24 years; mean, 20.0 ± 1.2 years) who did not participate in the fMRI 

experiment. The procedures used were virtually identical to those used in the fMRI experiment. 

These subjects received monetary rewards based on the points they earned during three 

experimental sessions (see below) in addition to the base fee. All subjects in both experiments 

gave their informed written consent, and the study was approved by RIKEN’S Third Research 

Ethics Committee. 

 

Experimental tasks 

Two tasks, the Control and the Other, were conducted (Figure 1A). Each task consisted of 

multiple trials in which different pairs of fractal stimuli were used. Each trial within both tasks 

consisted of four phases. 
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The Control task was a one-armed bandit task (Behrens et al., 2007), in which subjects 

were instructed to choose the stimulus that would maximize the number of points earned. At the 

beginning of each trial, subjects were presented with a pair of fractal stimuli with a fixation 

point between them. The two stimuli with randomly assigned reward magnitudes, indicated by 

numbers in their centers, were randomly positioned left or right of the fixation point in every 

trial (for 3-7 s; CUE phase; Figure 1A). In every trial, the reward magnitude for one stimulus 

(R) was randomly sampled from a uniform distribution ranging from 1 to 99 points, while the 

reward for the other stimulus was set to (100-R); this randomization was further constrained to 

ensure that the same stimulus was not assigned the higher magnitude in three successive trials. 

This constraint was introduced, in addition to reward magnitude randomization, to further 

ensure that subjects did not repeatedly choose the same stimulus (see the control analysis 

described below). When the fixation point was changed to a question mark, subjects made their 

choice by pressing a button with their right hand within 1.5 s (RESPONSE phase). The chosen 

stimulus was immediately highlighted by a gray frame, initiating the INTER-STIMULUS 

INTERVAL (ISI) phase. After the ISI phase (3-7 s), the rewarded stimulus was revealed in the 

center of the screen for 3 s (OUTCOME phase). This was followed by a 3-5 s intertrial interval 

(ITI) before the next trial was commenced. In both the Control and Other tasks, one of the two 

stimuli was arbitrarily designated to have a higher reward probability (set to be 0.75, and 

thereby setting the other stimulus probability to 0.25). Subjects were not informed of the 

probability, but were instructed that the reward probabilities were independent of the reward 

magnitudes. 

In the Other task, subjects were instructed to predict the choice of another person who 

had performed the Control task. From the CUE to the ISI phase, the images on the screen were 

identical to those in the Control task in terms of presentation. However, the two stimuli 
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presented in the CUE phase were generated for the other person performing the Control task. 

Upon appearance of the question mark at the fixation point (RESPONSE), subjects predicted 

the choice made by the other person; this choice was immediately highlighted by a gray frame, 

initiating the ISI. In the OUTCOME phase, the other person’s actual choice was highlighted by 

a red frame, and the rewarded stimulus for the other was indicated in the center. For every trial 

in which the subjects’ predicted choice matched the other’s actual choice, they earned a fixed 

reward of 50 points. The Other task was designed to minimize differences from the Control task, 

so that the number of phases was the same between the two tasks and in terms of visual 

presentation, only the red frame, indicating the other’s choices, was added at the OUTCOME 

phase in the Other task. 

Subjects were told they would see on the screen the choices of another subject who had 

participated in previous experiments. However, the choices of the other subject were actually 

generated by an RL model (see below). In the Other task in the fMRI experiment, the RL model 

generated choices on a risk-neutral basis; the model’s parameters ( 0.14, 0.098, 1     ; see 

below) were determined from average values obtained in a pilot experiment (independent from 

the experiments reported in this study). Accordingly, the choices generated by the model were 

considered to approximately mimic average (risk-neutral) human behavior in this task, and thus 

allowed us to use the same type of the other’s behavior for all subjects; this approach was 

supported by a separate behavioral control analysis (see below). In post-experiment interviews, 

we debriefed each subject and confirmed that they had no doubt that the choices were being 

made by someone else. 

For the experiment in the MRI scanner, two tasks, one Control and one Other, were 

employed. Each task consisted of 90 trials, and the order of the two tasks was counter-balanced 

across subjects. Before these tasks, subjects performed a short exercise session (Control task, 20 
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trials) inside the MRI scanner. Before entering the scanner, they were first familiarized with the 

tasks through performance of a few tens of trials in both tasks using a shorter timing sequence 

for the phases, after which they performed two test sessions: 120 trials of both the Control and 

Other tasks, the order of which was counter-balanced across subjects. Subjects also obtained 

earnings in both test sessions. The results of these pre-scanning sessions were not reported in 

the present paper, as they were essentially the same as those from the two fMRI sessions 

reported in the paper. Finally, subjects performed the two tasks (40 trials for each) with the 

same timing sequence used for experiments involving the MRI scanner.  

Three conditions were used in a separate behavioral experiment (Figure 1C): one Control 

and two Others, and the order of the three was randomized across subjects. As in the fMRI 

experiment, these additional subjects also went through a training session before starting the 

main experiment. The settings for the Control and ‘Other I’ task were the same as described for 

the fMRI experiment, but in the ‘Other II’ task, a risk-aversive RL model 

( 0.14, 0.098, 1.568     ) was used to generate the other’s choices instead of the 

risk-neutral model. After altering the magnitude of   while fixing the magnitudes of the other 

two parameters, as in the original Other task, the RL model was found to choose the stimulus 

with the higher reward probability in the Control task with the same average percentage as the 

subjects in the fMRI experiment who behaved risk-aversively  i.e., there was no statistical 

difference after 100 runs of the model. After completing the experiments, we asked subjects via 

questionnaires: (i) Which information did you use for predicting the other’s choices in the Other 

task: the other’s outcomes, the other’s choices, or both?; (ii) Did you notice any differences 

between the other’s behaviors under the two different Other conditions? A majority of subjects 

reported that (i) they considered both sources of information (20/22 subjects) and (ii) they 

noticed the difference in the two conditions (21/22 subjects). These answers are further evidence 
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that subjects simulated the other’s value-based decision making and used both the 

simulated-other’s reward error and action prediction error.  

 

Behavioral analysis and computational models fitted to behavior  

Among the 39 subjects who underwent fMRI scans, three were not included in the final 

analyses because their choice behaviors were found to be outliers in the pool of subjects (P < 

0.01, Thompson’s test). The remaining 36 subjects were used for the subsequent behavioral and 

fMRI data analyses. For the behavioral analyses shown in Figure 1C, two of the 24 subjects 

were not included due to outlier behavior (P < 0.01, Thompson’s test), leaving 22 subjects for 

the final analysis. 

We fitted several computational models to the subjects’ choice behaviors in both tasks. 

All of these models were based on and modified from the Q learning model, a basic RL model 

(Sutton and Barto, 1998), which is referred to simply as the RL model, hereafter (Supplemental 

Figure S1A). In the Control task, the RL model, being risk-neutral, constructed values Qs of the 

two stimuli in each trial, given by  

     S S SQ A R A p A  ,  (1) 

where ( )SR A  is the reward magnitude of stimulus A in a given trial, ( )Sp A  is the reward 

probability of stimulus A, and the subscript, s, refers to the subject (under simulation-free RL 

formulation). The value of the other stimulus, B, was similarly derived; for simplicity, therefore, 

we will only provide equations for stimulus A. To account for possible risk-aversive (or 

risk-prone) behaviors of subjects, we followed the approach taken by Behrens et al. (2007); we 

included a free parameter that replaced ( )Sp A  in Eq (1) with  ( ),SF p A  ; where   is a 

non-negative free parameter for risk behavior, and the function  ,F p   is a simple non-linear 
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transform within the bounds of 0 and 1, given by  

   , max min ( 0.5) 0.5 ,1 ,0F p p        .  (2) 

When 1  ,  ( ), ( )S SF p A p A  , leading to risk-neutral behavior, whereas 1   and 1   

imply risk-aversive and risk-prone behavior, respectively.  

The RL model chose either stimulus A or B based on the choice probability (of stimulus 

A)  Sq A , given by 

      S S Sq A f Q A Q B  , (3) 

where    1 1 expf z z      is a sigmoidal function allowing probabilistic choices with 

a free parameter , which adjusts the degree of stochasticity in the choices (Sutton and Barto, 

1998). Once a choice was made and the reward outcome was revealed, the RL model utilized 

the reward prediction error to update the stimulus value based on the Rescorla-Wagner rule. In 

the context of our tasks, only the reward probability was updated (Behrens et al., 2007) because 

this was the only variable unknown to subjects. Accordingly, when stimulus A was chosen, the 

reward prediction error was given by 

 S S Sr p A   , (4) 

where sr  is the reward outcome (1 if stimulus A is rewarded and 0 otherwise). The reward 

probability was updated using    S S Sp A p A   , where  , another free parameter, is 

the learning rate.  

Two variants of the RL model were also fitted to the behavior in the Control task. To 

compute the stimulus values, the two models ignored either the reward magnitude or the reward 

probability, thus setting    S SQ A p A  or    S SQ A R A , respectively. We also tested a 
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model using    ( ),S SQ A F p A  , but its fit was significantly worse than that of the RL 

model (data not shown).  

The model with the best fit to the behavior in the Other task was the model that we called 

Simulation-RLsRPE+sAPE model (S-RLsRPE+sAPE) (see Supplemental Figure S1A). In each trial, the 

S-RLsRPE+sAPE model computed the subject’s choice probability       S S S
q A f Q A Q B    , 

where we used s  instead of s  to indicate subjects, because  S
q A  

was computed in a 

“simulation-based” manner  i.e., by simulating the other’s RL model. We reserved s  to 

indicate subjects when computing in a “simulation-free” manner. Here,    
S SSQ A R p A    

indicates stimulus A’s value for subjects;   ( ) ( )S S SR R A R B   denotes the fixed reward 

outcome that subjects would obtain if their prediction of the other’s choice matched the other’s 

actual choice. When simulating the other’s RL model, the subjects’ stimulus reward probability 

is equivalent to the simulated-other’s choice probability,    OS
p A q A . The 

simulated-other’s choice probability as well as the simulated-other’s value of stimulus A are 

given by 

      O O Oq A f Q A Q B   and      O O OQ A R A p A  ,  (5) 

where  OR A  is the reward magnitude of stimulus A for the other in the trial, and  Op A  

is the simulated-other’s reward probability for stimulus A. When inclusion of the risk parameter 

produced a better fit to behavior,  Op A  in the second equation was replaced by 

 ( ),OF p A  . 

When the outcome for the other was revealed (denoted by Or , which was 1 if the 

other received a reward and 0 otherwise), the S-RLsRPE+sAPE model updated the reward 
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probability, not only using the simulated-other’s reward prediction error but also the 

simulated-other’s action prediction error. The simulated-other’s reward prediction error was 

given by    O O OA r p A   . The simulated-other’s action prediction error was generated 

first in the ‘action’ level as the difference between the other’s actual choice and the 

simulated-other’s choice probability, given by    ( ) ( ) 1O A O OA I A q A q A      , wherein 

the choice probability is generated through a sigmoid function using the difference of two 

values (1st equation in Eq (5)); thus, to be used for updating the simulated-other’s value, the 

action prediction error needed to be ‘pulled back’, or transformed, from the action to the value 

level (Supplemental Figure S1A). As this error should act as a learning signal to update the 

simulated-other’s value, which is to cause a small change of the value in the value level, the 

transformation of the error between the two levels can be formulated by making 

correspondingly small changes in both of the levels. This is accomplished using a general notion 

of variation. Given function ( )z f x , a variation equation is given by ( )z f x x  , which 

indicates how small changes between both sides ( ,z x  ) should match, and in our 

case, z and x correspond to the simulated-other’s choice probability and the chosen value, 

respectively. Applying the variation formulation to our case leads to,  

          /O O O O Oq A f Q A Q B Q A Q A       . (6) 

When we set ( ) ( )O Oq A A   and replaced the 1st term on the left hand side of the equation 

with K, we let    /O OQ A q A K   when 0K  ; otherwise   0OQ A  . By simple 

calculation, we obtain      O O OK R A q A q B , where   is omitted on the right side 

because it will be absorbed into the learning rate. Thus, the simulated-other’s action prediction 
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error (in the value level) is given by ( ) ( ) /O OA A K   ( 0)K  ; we refer to the 

simulated-other’s action prediction error as being in the value level, unless explicitly stated 

otherwise. Then, the S-RLsRPE+sAPE updated the simulated-other’s reward probability, using both 

the simulated-other’s reward and action prediction errors together, given by  

    ( ) ( )O O sRPE O sAPE Op A p A A A      , (7) 

where the two  ’s indicate the learning rates of the reward and action prediction errors. In 

both the Control and Other tasks, the learned variable is a reward probability dissociated from 

reward magnitudes (Behrens et al., 2008; Behrens et al., 2007; Boorman et al., 2009), as 

magnitudes were randomly assigned to the stimuli, and independent of the stimulus (see below 

for the control analysis confirming this view).  

The two other Simulation-RL models, each using only one of the two prediction errors, 

were modeled by using either sRPE O   or sAPE O   to update ( )Op A  in Eq (7). The 

simulation-free RL model, which focused only on the subjects’ own outcomes during the Other 

task, set the choice probability to       S S Sq A f Q A Q B  , where    S S SQ A R p A  , 

given the subjects’ reward SR  and the estimated reward probability ( )Sp A .  Sp A  was 

replaced by  ( ),SF p A   whenever a better fit to behavior was obtained by including the risk 

parameter. The reward probability was updated by    S S Sp A p A    using the reward 

prediction error    S S S SC r p A   .  

We used a maximum likelihood approach to fit the models to the subjects’ behaviors. For 

individual subjects, we minimized the negative log-likelihood of the sum of each model’s 

choice probabilities against the actual choices made by subjects (matlab command fminsearch; 
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Matlab R2007b, MathWorks). Each minimization was repeated 50 times, using randomly 

generated initial values. The model with the best minimization was then selected, which also 

determined the estimated values of the model’s free parameters. For comparisons of goodness 

of fit, we used Akaike’s Information Criterion (AIC) to take into account the different numbers 

of free parameters between models. We first compared the total AIC values between two 

models, calculating each AIC value as a summation of all subjects’ AIC values. Second, to take 

into account variation in the AIC values across subjects, we also used a paired t-test to compare 

the distribution of differences in the AIC values obtained in the two models. When the results of 

the two comparisons were consistent, we reported the results of the second analysis in the 

Results (e.g., in Figure 1D), since this was more stringent; otherwise, we reported the results for 

both comparisons. For a given model’s fit to each subject’s behavior in a task, the inclusion of 

the risk parameter was determined using the AIC value to compare the fit by two variants of the 

given model, with or without including the risk parameter (the risk parameter, when included, 

was optimized together with the other parameters in the minimization); the risk parameter was 

included only if it yielded a better fit for the given model with the subject in the task.  

When we reported the accuracy of each model’s performance averaged across subjects in 

Results, the accuracy was expressed as a percentage, across trials within a given task, of the 

model’s stimuli with the higher choice probability that matched the stimulus actually chosen by 

subjects. 

Given that the S-RLsRPE+sAPE model had the best fit to the behavior in the Other task, we 

performed two control analyses, which provided evidence supporting separate contributions of 

the simulated-other’s reward and action prediction errors to simulation learning. First, we 

examined Spearman’s correlation coefficient between the two errors; it was found to be low 

across subjects (mean ± standard deviation: -0.018 ± 0.129); at each individual, only 2 of 36 
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subjects had correlations significantly different from zero (P < 0.05, two-tailed; the two 

subjects’ correlation coefficients corresponded to the maximum and minimum magnitudes 

among the subjects, 0.198 and -0.271, respectively). Also, the correlation between the learning 

rates of the two errors was low (-0.155), insignificantly different from zero (P=0.366). As a 

further confirmation, we also examined Spearman’s correlation between the information 

provided by the other’s rewards and actions (using a binary representation); it was low (-0.042 ± 

0.125); at each individual, only 2 subjects (who were different from the two subjects above) had 

correlations significantly different from zero (P < 0.05, two-tailed; the two subjects’ correlation 

coefficients corresponded to the maximum and minimum, 0.300 and -0.277, respectively). 

Together, these results indicate that the two errors can in principle have a separate contribution 

to learning to simulate the other’s decisions.  

Second, we conducted a two-way repeated measures ANOVA analysis to examine 

whether the subjects’ behavior differs with respect to the magnitudes of the simulated-other’s 

action prediction error in the previous trial (Supplemental Figure S1B). The S-RLsRPE+sAPE 

differs from the S-RLsRPE in that it uses the action prediction error as an additional learning 

signal. Therefore, the S-RLsRPE+sAPE should predict that, in a given trial, the subjects are more 

inclined to choose the same option that the other chose in the previous trial, as the 

simulated-other’s action prediction error is larger; whereas the S-RLsRPE is insensitive to the 

information of this error. We examined this hypothesis by analyzing the percentage of times that, 

in a given trial, the subject’s choice coincided with the other’s chosen option in the previous 

trial. For the first variable of the ANOVA, we used the median of the action prediction error (for 

each subject) to sort the trials during the Other task into two groups. As the simulated-other’s 

reward prediction error also contributes to learning, it was also of particular interest to contrast 

the cases when the reward prediction error was either negative or positive, because the effects of 
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the reward and action prediction errors on updating the simulated-other’s reward probability are 

opposite only when the reward prediction error is negative. Thus, as the second variable in the 

ANOVA, we used the sign of the reward prediction error to also classify the trials into the two 

groups.  

We also examined the fit of several variants of the S-RLsRPE+sAPE model to the behavior in 

the Other task, compared with that of the original S-RLsRPE+sAPE model. First, we examined two 

variants including risk parameters differently from the original model and the results of the 

comparison of the fit indicated that the original S-RLsRPE+sAPE model fit equally or better to the 

behavior compared with the two variants. In the original model, the risk parameter was included 

in the simulated-other’s choice probability, but not in the subject’s own choice probability. This 

was because we reasoned that the effect of the risk parameter was relatively negligible at the 

subject’s level of valuation, as the reward magnitude was fixed for subjects. However, we also 

examined two other variants of the S-RLsRPE+sAPE model: one that included a risk parameter only 

at the subject’s level and another that included risk parameters at both the subject’s and 

simulated-other’s levels. The original S-RLsRPE+sAPE model fit the behavior significantly better 

than the variant that included a risk parameter only at the subject’s level (1461.1 vs. 1543.1; in 

total AIC values and P < 0.01 by paired t-test). The original was also significantly better than 

the variant that included risk parameters at both levels (1461.1 vs. 1466.4; total AIC values), 

though the original did not significantly differ from the variant based on a paired t-test (P = 

0.36).  

Second, to examine a variant of the S-RLsRPE+sAPE model that used the simulated-other’s 

action prediction error only for biasing the subject’s choices in the next trial, ( )sAPE O A   was 

omitted from Eq (7) and the subject’s choice probability was modified as 
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       ' ( )OS S S
q A f Q A Q B A     , where   is a free parameter to determine the 

influence of the bias (determined when maximizing likelihood), and '
O  is the 

simulated-other’s action prediction error in the action level from the previous trial (Note: We 

also examined the case in which we the action prediction error in the value level was use for 

biasing, i.e. using        ( )OS S S
q A f Q A Q B A     ; the result was the same: P < 

0.001, one-tailed paired t-test). 

 

Additional control analyses on behavior and computational models fitted to behavior  

In addition to the results reported in the main text, we summarize here further control 

analyses using the same data in the main text.  

We conducted a control analysis on the non-linear risk function (Eq. 2) for capturing the 

subjects’ risk tendency observed in experimental tasks. Overall, the results of the control 

analysis support the use of the non-linear risk function; or at the very least, there is no reason to 

believe that the other functions examined in the control analysis can better account for the risk 

behavior. We examined two other representative approaches accounting for risk behavior: using 

the power function or mean-variance functions, both of which are often used in neuroscience 

studies (Huettel et al., 2006; Tobler et al., 2009). The power function had the form, 

( ) { ( )} ( )Q A R A p A  , where subscripts were dropped for simplicity and   in the power of 

the reward magnitude is the risk parameter in this function. The mean-variance function is, 

   2( ) [ ( )] Variance[ ( )] ( ) ( ) { ( )} ( )(1 ( ))Q A E R A R A R A P A R A P A P A        ,  

where again   is the risk parameter of the function. First, we compared the fits of the three 

functions to the subjects’ behavior in the Control task. The non-linear function (Eq. 2) fit the 



Supplemental Information: Simulation learning of other’s decisions 

24/35 
 

behavior equally as well as the power and mean-variance functions (P = 0.12 and P = 0.18, 

respectively, by paired t-test over the AIC distributions). The correlations of the risk parameter 

values between the non-linear function and each of the two other functions is very high 

(Spearman’s correlation coefficient: 0.93 and 0.95 for the power and mean-variance function, 

respectively), suggesting that they capture the nature of the risk behavior in a very similar way. 

Second, we then examined a variant of the power function, given by 

'( ) { ( )} { ( )}Q A R A p A    ; that was used in another study (Boorman et al., 2009), in which a 

task was somewhat similar to the Control task in this study. This model’s fit was again not 

different from that used in the main study (P = 0.37). Third, we also compared these different 

approaches for fitting the models to the behavior in the Other task; the non-linear function had a 

comparable or better fit than the other three functions (P < 0.05 with the original power function, 

P < 0.01 with the mean-variance function, and P = 0.18 with the variant of the power function).  

We conducted a control analysis to address a possible concern of whether reward 

magnitudes might have an effect on learning the reward probability; for instance, missing out on 

a large reward magnitude might have a particular effect on learning, compared to missing out on 

a relatively small reward. In the original model settings for both Control and Other tasks, we did 

not include any parameters that might take into account effects of reward magnitudes on 

learning reward probability. This was because in our experimental tasks, reward magnitudes 

were randomized every trial, independently (or almost completely independently at the very 

least given the additional constraint on reward magnitude randomization) from the reward 

probability of the stimulus. Thus we consider it neither possible nor necessary to learn to 

associate specific reward magnitudes with specific stimuli, as supported by earlier studies using 

the same or similar task for the Control task (Behrens et al., 2007; Boorman et al., 2009). 

Nevertheless, to address the concern, we examined the behavioral fits of several variants of the 
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models best fitted to each task (the RL model in the Control task and S-RLsRPE+sAPE model in the 

Other task). Using two approaches, we constructed models’ variants that had different learning 

parameters depending on reward magnitudes as well as on whether reward was gained or missed. 

The first approach was to allow different learning rates for when the reward magnitude of the 

stimulus chosen in the trial was smaller or larger than 50 (since reward magnitudes were 

randomly assigned to the two stimuli as R and 100-R). Thus, the variant of the RL model in the 

Control task (hereafter called the 1st-variant RL model) had two learning rate parameters, only 

one of which was used for updating the value, depending on the magnitude of the stimulus 

chosen by the subject in the trial. Similarly, for the S-RLsRPE+sAPE model in the Other task, we 

allowed different learning parameters depending on the reward magnitude (for the other) of the 

stimulus chosen by the other in Other task. There were three variants of the S-RLsRPE+sAPE 

model; the ‘1st-R-variant’ and ‘1st-A-variant’ S-RLsRPE+sAPE model had the two different learning 

parameters only for the simulated-other’s reward and action prediction error, respectively; and 

the ‘1st-RA-variant’ S-RLsRPE+sAPE model had the two different learning parameters for each of 

the two errors. The second approach was to further allow different learning parameters 

depending on whether the reward was obtained or missed. Thus, this variant of the RL model in 

the Control task (the 2nd-variant RL model) had four learning parameters, one of which was 

used in each trial, depending on the magnitude of the stimulus chosen by the subject in the trial 

and on whether the chosen stimulus was rewarded or not. For the S-RLsRPE+sAPE model, there 

were three-variants; the ‘2nd-R-variant’ and ‘2nd-A-variant’ of the S-RLsRPE+sAPE model had the 

four different learning parameters only for the simulated-other’s reward and action prediction 

error, respectively, and the ‘2nd-RA-variant’ S-RLsRPE+sAPE model had the four different learning 

parameters for each of the two errors.  

The comparison of the fit of these variants to the behavior with that of the original model 
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(using the paired t-test over the AIC distributions) demonstrated that reward magnitudes did not 

have a noticeable effect on learning the reward probability; For the Control task, the fit of the 

original RL model was not significantly different from those of the two variants (the 1st-variant 

and the 2nd-variant RL model; P =0.15, and P =0.61, respectively); For the Other task, the fit of 

the original S-RLsRPE+sAPE model was not significantly different from those of most of the 

variants (the 1st-R-variant, the 1st-A-variant, the 1st-RA-variant, the 2nd-R-variant and the 

2nd-A-variant S-RLsRPE+sAPE model; P =0.22, P =0.12, P =0.10, P =0.42, and P =0.63, 

respectively) and was better than that of the most complex variant (the 2nd-RA-variant 

S-RLsRPE+sAPE, P < 0.01).  

 

Additional behavioral experiments for control analyses  

In addition to the results reported in the main text, we further performed two additional 

behavioral experiments for control analyses that are summarized here. Subjects in each 

experiment did not participate in any other experiments described in this report, and received 

monetary rewards, in addition to the base fee, based on the points they earned during the 

experiment. The procedures used were virtually identical to those used in the fMRI experiment 

except particular aspects of the experiment (described below). After completing the experiment, 

we asked subjects to fill in the questionnaires. All subjects gave their informed written consent, 

and both studies were approved by RIKEN’S Third Research Ethics Committee.  

In the first experiment, we examined the question of whether the subjects’ prediction of 

the other’s choices generated by a computer model (which was adopted in the main study) may 

differ from those made predicting the choices generated by actual humans, or more precisely, by 

risk-neutral humans. An additional question was whether the subjects’ predictions were actually 

meaningful or at all different from those made when the other’s choices were random choices, 
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i.e., generated by a random-chooser. This additional experiment involved 17 normal subjects 

(11 females, 6 males; age range, 18-33 years; mean, 21.4 ± 4.0 years). The subjects earned the 

points during the four experimental sessions, corresponding to the following four conditions: 

one Control task and three Other tasks. The other’s choices were generated by the RL model 

(O-RL, using the same parameter values used in the main report), by a risk-neutral human 

(O-human), and by a random-chooser (O-random). The procedures were modified from those 

used in the fMRI experiment in the following two aspects: (i) O-random was not used in 

exercise sessions and was always placed in the last of the four main sessions (the order of the 

other three sessions was counter-balanced across subjects). This was to avoid any potential 

compounds. When we compared the subjects’ behaviors in the O-RL and O-random tasks prior 

to this experiment, they were already quite different; thus, if the subjects had experienced 

O-random either in exercise sessions or as one of the main sessions before the other main 

sessions, they might have been confused by the experience, which might have affected their 

behavior in the other main sessions. (ii) We balanced the subjects’ experience of O-RL and 

O-human tasks in the exercise session. For the short exercise session, either O-RL or O-human 

was used to generate the other’s choices, counter-balanced across the subjects. For the long 

exercise session, the subjects experienced three sessions: one Control task and two Other tasks 

(O-RL and O-human). The choices in the O-human task were those of actual human subjects 

during the Control task, who indicated risk-neutral behavior in the behavioral experiment 

reported in the main text (i.e., the experiment conducted for the results in Figure 1C); there were 

8 subjects in this pool. For each subject in this experiment, a different set of O-human choices 

was randomly chosen in the exercise session; the sets of choices were also randomly chosen in 

the main session but we ensured that they were different from that used in the exercise session. 

Among the 17 subjects, there were no outliers (P > 0.01, Thompson’s test) and all data was 
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included in the subsequent analysis.  

The results of the additional experiment support the rationale for the use of the fitted 

risk-neutral RL model in the main report (see Supplemental Figure S1C and the legend). This 

conclusion was further supported by the subjects’ answers to the following post-experiment 

questionnaires: (i) Which information did you use for predicting the other’s choices in the Other 

task: the other’s outcomes, the other’s choices, or both? (ii) Did you notice any differences in 

the other’s behavior among the three Other task sessions; if yes, which session(s) were different 

from the other sessions? (iii) Were there any of the three Other task sessions that you felt that 

the other behaved non-humanly? A majority of subjects reported that (i) they considered both 

sources of information (14/17 subjects), (ii) they considered that the O-random (i.e., the last of 

the three Other task sessions) behaved differently from the O-RL and O-human (14/17 subjects), 

and (iii) they considered that the O-random behaved non-humanly (13/17 subjects). 

In the second experiment, we examined whether our additional constraint on the reward 

magnitude randomization (such that the same stimulus was not assigned the higher magnitude in 

three successive trials) might alter the subjects’ behavior, compared to the case when the reward 

magnitude assignment was completely random. This additional experiment involved 23 normal 

subjects (9 females, 14 males; age range, 18-37 years; mean, 20.9 ± 4.2 years). The subjects 

earned the points during the following four experimental sessions: the Control and Other tasks 

when the reward magnitude randomization was conducted with or without the constraint 

mentioned above. The procedures used were modified for the following; we tried to ensure that 

the subjects experienced the tasks equally with or without the constraint during exercise 

sessions before the main sessions. For the short exercise session, the subjects experienced both 

the Control and Other tasks either with or without the constraint, counter-balanced across 

subjects, while during the long exercise session, they experienced all the four conditions. After 
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excluding two subjects based on their outlier choice behaviors (P < 0.01, Thompson’s test), the 

remaining 21 subjects (9 females, 11 males; age range, 18-37 years; mean, 20.8 ± 4.4 years) 

were used for the subsequent analysis.  

The results of this additional experiment demonstrate that the subjects’ behaviors in both 

the Control and Other tasks did not significantly differ with or without the additional constraint 

on reward magnitude randomization (see Supplemental Figure S1D and the legend). This 

conclusion was further supported by the subjects’ answers to the following post-experiment 

questionnaires: (i) Which information did you use for predicting the other’s choices in the Other 

task: the other’s outcomes, the other’s choices, or both? (ii) Did you notice any differences in 

the reward magnitudes of the various options or in the ‘correct’ stimulus between the two 

sessions of the Control task? (iii) Did you notice any differences in the reward magnitudes of 

the options or in the ‘correct’ stimulus between the two sessions of the Other task? A majority 

of subjects reported that (i) they considered both sources of information (18/21 subjects), (ii) 

they noticed no differences in the two sessions of the Control task (19/21 subjects), and (iii) 

they noticed no differences in the two sessions of the Other task (20/21 subjects).  

 

fMRI acquisition and analysis.  

The fMRI images were collected using a 4 T Varian Unity Inova MRI system (Agilient Inc., 

Santa Clara, CA) with a phased array coil (four receiver coils were placed over the left and right 

frontal and occipital cortices). For subjects positioned in the scanner, visual input was provided 

via a fiber optic goggle system (Avotec, Jensen Beach, FL) that subtended 25°×19° of the visual 

angle, and subjects used a button box to make their responses. The BOLD signal was measured 

using a two shot T2*-weighted echo planar imaging sequence (Volume TR=2222 ms, 

TE=20.5 ms, FA=30°). Twenty-five axial slices (thickness=3.0 mm, gap=1 mm, 
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FOV=192×192 mm, matrix=64×64) parallel to the AC-PC plane were acquired per volume. The 

start of an experimental task was synchronized with the first EPI acquisition timing. Before, 

after, or between the functional runs, a set of high-resolution (1 mm3) and a set of 

low-resolution (1.72 mm3) whole-brain anatomical images were acquired using a T1-weighted 

3D FLASH pulse sequence (TI=500ms, FA=11°, [TR=12.7ms, TE=6.8ms] for the high 

resolution scans, [TR=11.1 ms, TE=6.2 ms] for the low resolution scans). The low-resolution 

anatomical imaging slices were parallel to the functional imaging slices and were used to aid in 

co-registering the functional data to the high-resolution anatomical data. A pressure sensor was 

used to monitor and measure the respiration signal, and a pulse oximeter was used to measure 

the cardiac signal. The respiratory and cardiac signals were used in postprocessing to remove 

physiological fluctuations from functional images (Hu et al., 1995). 

Functional and anatomical images were analyzed using Brain Voyager QX 2.1 (Brain 

Innovation B.V., Maastricht, NL). Functional images for each subject were preprocessed, which 

included slice time correction, three-dimensional motion correction, spatial smoothing with a 

Gaussian filter (FWHM=8 mm), and high-pass filtering (three cycles per run length). 

Anatomical images of each subject were transformed into the standard Talairach space (TAL) 

(Talairach and Tournoux, 1988). Functional images were then normalized and resized according 

to transformed structural images, and thus transformed into the standard Talairach space. An 

exception was activation in the ventral striatum reported in Supplemental Figure S3 (see 

legend).  

We employed a so-called model-based analysis (O'Doherty et al., 2007) to analyze the 

BOLD signals in both tasks. For the Control task, we created subject-specific design matrices 

containing the following regressors: (1) six regressors encoding the average BOLD responses 

for the onsets and the periods of the DECISION, ISI, and OUTCOME phases, where the 
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DECISION phase was defined as the period from the onset of CUE until subjects made their 

responses in the RESPONSE period and the other two phases were defined as in Figure 1A; (2) 

two regressors for the two variables of interest: one representing the reward probability (RP) of 

the stimulus chosen in the DECISION period and the other representing the reward prediction 

error (RPE) in the OUTCOME period. For the Other task, subject-specific design matrices 

contained the following regressors: (1) the same six regressors as in (1) above in the Control 

task; (2) three regressors for the three variables of interest: one representing the subject’s reward 

probability (RP) for the stimulus chosen in the DECISION period, and the other two 

representing the simulated-other’s reward (sRPE) and action prediction (sAPE) errors in the 

OUTCOME period. For both tasks, all regressors were convolved using a canonical 

hemodynamic response function. Also included were six variables of no interest  i.e., motion 

correction parameters  to account for motion effects. Together, these regressors were fitted to 

each subject’s data individually, and the fitted coefficient values of the regressors (effect sizes) 

were then entered into a random-effects analysis and analyzed using a one-tailed t-test. The 

significances of the BOLD signals were reported based on corrected p-values (P < 0.05), using a 

family-wise error for multiple comparison corrections, where cluster-level inference was used.  

We first thresholded contrast maps at P < 0.005 (uncorrected) and determined the appropriate 

spatial extent threshold for corrected cluster-level inference at P < 0.05 (corrected), referring to 

the AlphaSim program in Analysis of Functional NeuroImages (AFNI) (Cox, 1996); This 

resulted in reporting uncorrected P < 0.005 and cluster size > 56 unless otherwise explicitly 

stated.  

Additional regression analyses were employed to further examine the potential 

confounders of the variables of interest. For each variable of interest, additional regressors 

corresponding to potential confounders for that variable were added to the same phase of the 
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original regression matrix in each task, as described in the Results section. All of the signals in 

the vmPFC, dmPFC, and dlPFC reported in the Results section remained significant (P < 0.05, 

corrected) with these additional regressions. 

To extract cross-validated percent changes in BOLD signals (Figure 2B, D), we followed 

the previously described leave-one-out procedure (Gläscher et al., 2010) to provide an 

independent criterion for ROI selection and thus ensure statistical validity (Kriegeskorte et al., 

2009). We re-estimated our second-level analysis 36 times, always leaving out one subject. 

Starting at the peak voxels for the focal signal (e.g., the simulated-other’s reward prediction 

error in the vmPFC in Figure 2B), we selected the nearest maximum in these cross-validation 

second-level analyses. The selected voxel was defined as an ROI, and we extracted the BOLD 

signal in the ROI from the left-out subject. Based on the magnitude of the focal signal, the 

left-out subject’s cross-validated BOLD changes were binned as low, medium, or high 

(corresponding to the 33rd, 66th, and 100th percentiles, respectively) to obtain the individual’s 

bin-wise mean BOLD changes. Then the mean BOLD changes across subjects (and the SEM) 

were computed for each bin. To determine whether the BOLD changes increased with the order 

of the bins, we calculated Spearman’s correlation coefficient (  ) using the distributions of the 

individual’s bin-wise values, which were the difference between the individual bin-wise mean 

and the individual’s grand mean for all the trials. Its statistical significance was tested using a 

one-tailed t-test.  

To investigate the correlations between the variabilities of the subjects’ effect sizes in 

respective brain regions and their behavioral variabilities (Figure 3), we calculated Spearman’s 

correlation coefficient (  ) and tested its statistical significance using a one-tailed t-test. Given 

our hypothesis that the neural variability in a ROI for each error should be positively correlated 

with the behavioral variability, we also examined the bootstrap test, allowing replacements and 
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generating 10,000 bootstrapped datasets, to examine the significance (these results are not 

shown, as the results are the same as those from the one-tailed t-test). We chose to use the 

Spearman’s, because it is nonparametric and thus known as being relatively robust against 

possible outliers. Nevertheless, we performed two additional correlation analyses, each of which 

was more robust against possible outliners. One was to use Jackknife to detect potential outliers 

and remove the detected data points before computing the correlation (  ) (Efron, 1992); in 

brief, we first computed the so-called Jackknife influence function ( ){ } ( 1)( )i iu n    　
, 

where n  is the number of samples, i  is the Spearman’s correlation coefficient computed 

by excluding the i-th subject, and ( )
1

1 n

i
in

 


 　 . We then obtained the relative Jackknife 

influence function, †{ } { } /i iu u Z  , where Z is a normalization factor given by 
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n


  . Using the values of the relative Jackknife influence function, we 

detected samples that might have rather extraordinary influences on the statistics of interest 

(correlation in our case). We classified these samples as outliers, if the i-th sample had 

†| { } | 2iu   . After removing the outliers, the Spearman’s correlation coefficient was computed 

and the significance was examined using a one-tailed t-test. The other was to use the so-called 

robust correlation coefficient (Abdullah, 1990), instead of Spearman’s, as it is more robust 

against potential outliers. The robust correlation coefficient is a weighted correlation coefficient, 

in which the weights were set to zero for data points judged as potential outliers, based on the 

residuals of the linear regression (Abdullah, 1990; Eqs. 2.3 and 2.4). The significance was 

examined using a bootstrap test (10,000 bootstrapped datasets, allowing replacements; 

one-tailed test). 
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To ensure the results of the cross-validated ROI analyses (Figure 4B), we also performed 

additional ROI analyses by orthogonalizing each variable to the variable used to define the ROI, 

when it was from the same task. Results of these analyses are essentially the same as those 

shown in Figure 4B. Specifically, an ROI defined by RP in the Control task contained signals 

significantly modulated by RPE, even when the regressor variable of RPE was orthogonalized 

to RP in the Control task (P<0.005); an ROI defined by RPE contained signals significantly 

modulated by the regressor variable of RP in the Control task, even when the regressor variable 

was orthogonalized to RPE (P<0.005); an ROI defined by RP in the Other task contained 

signals significantly modulated by the regressor variable of sRPE, even when the regressor 

variable was orthogonalized to RP in the Other task (P<0.005); and an ROI defined by sRPE 

contained signals significantly modulated by the regressor variable of RP in the Other task, even 

when the regressor variable was orthogonalized to sRPE (P<0.00005). 
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